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Abstract its notation, we believe, can be attributed to a paper by
Brikhoff [10], which predated the 1911 Solvay Conference,

The single-particle dynamics in a time-dependent focus-

ing field is examined. The existence of the Courant-Snydgvrhere’ according to commonly accepted history, the con-

invariant is fundamentally a result of the correspondin ept of adiabatic invariant for a time-dependent harmonic

symmetry admitted by the oscillator equation with time- slcr:”?r:iosr W:Seﬁrrsf/vdelsf(i:russtsr(aec{;(yalr_r?i;eemtﬁsnt?mEel?;et:elgn%;it
dependent frequency. A careful analysis of the admitter(]j S Paper, : : dep

: " armonic oscillator equation from the viewpoint of the
symmetries reveals a deeper connection between the non-

linear envelope equation and the oscillator equation. iymmetry group(; for Eq. (1). It is shown that the sym-

general theorem regarding the symmetries and invariarg]setry group for Eq. (1) is generated by an 8D Lie alge-

of the envelope equation, which includes the existence fa (infinitesimal generatoy), which contains the 3D sub-

the Courant-Snyder invariant as a special case, is demoehgebragcs that corresponds to the Courant-Snyder invari-

strated. The symmetries of the envelope equation enableaglt' The envelope equation appears naturally as the deter-

fast algorithm for finding matched solutions without usingg]r g‘&ngoefiﬁztf:vggcg ':Vfi;?iir; ';:Z:ﬁct'?f |tse ittheersgg]tirr?eiLyat
the conventional iterative shooting method. P . be €q o 9

the determining equation for the Lie algelgraof the sym-
metry groupG,, for the envelope equation is an envelope
INTRODUCTION equation itself. A theorem regarding the symmetry and the

The Courant-Snyder invariantfor an oscillator with tUmes v ariant for envelope equations is presented, together with

dependent frequency is an important concept for accelerg- . _..
tor physics [1]. For an oscillation amplitudét) satisfying ﬁppllcatlons.
i+ r(u=0, (1) SYMMETRY GROUP FOR
TIME-DEPENDENT OSCILLATOR
wherex(t) is the time-dependent frequency coefficient, the EQUATION

Courant-Snyder invariant is given by [2]
A symmetry group can be used to reduce the order of

I u? ) .2 5 differential equations and to generate invariants [12]. We
= 2 T (e —wi)”. (@) search for vector fields in (t,u) space
Here,w = w(t) is any solution of the envelope equation _ 9 9 4
v=E(tu) g, + 0t u) 5 (4)
W+ K(t)w — LS =0. (3) as infinitesimal generators (Lie algebgajor the symme-
w

try transformation grougr, which leaves Eq. (1) invariant.
This classical result has been derived many times usirde vector fieldv will induce a vector field in(¢, u, @, i)
different methods. Initially, it was derived by CourantSPace, i.e., the prohgation ofv denoted byr*)v,

and Snyder in 1958 [2] using the basic techniques for @) o o .0 v O

Hill's equation. It was rediscovered by Lewis [3] using ~ Pr v =&z + oo+ 0" oo + o™ o, (5)
the asymptotic method developed by Kruskal [4]; Eliezer

and Gray [5] demonstrated a physical interpretation of the qiu St ((b &)i =& u " (6)
invariant; a derivation using linear canonical transforma- ¢ = =38t + (Pu — 26¢)1i — Euul (7)
tion was given by Leach [6]; and Lutzky re-derived the re- + (Puu — 260) 0% + (20wt — &)t + P -

sult using Noether’s theorem [7]. A short review of vari- o . o

ous derivation methods can be found in Ref. [8]. We not&h€ determining equation farto be an infinitesimal gen-
that the basic concept of the Courant-Snyder invariant méfator forG is

had appegred earlier in .other form_ats. For ex_ample, Kul- prPufii+ k(t)u] = ¢“* + ko + Ehu=0.  (8)
srud obtained two equations far which are equivalent to o . .

Eq. (3) [9]. The concept of an envelope functienand ~ Substituting the expression fot, we obtain
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productive discussions. —(Pu =28 )ku + du + K¢ + ~Eu = 0. (9)




Since Eq. (9) should be valid everywhere(inu, i) space, For the 2D sub-algebra = d9d/0u associated with, it is
the coefficients ofi?, /2, andu should vanish, i.e., easy to show that the invariant is

S =0,  (10) I =ud—ad, (24)

(buu - thu =0, (11) . . . . .
3 9 —0 12 which is the well-known Wronskian for linear equations.
F&uth + 20u - =0, (12) o ihe 3D Lie algebra = b3/9¢ + u(b/2)0/du associ-
—k (u —2§) u+ b+ rp+ Efu=0.  (13)  ated withb, the invariant is found to be

Equations (10)-(13) can be used to find the solutiong for i b i
and¢. After some algebra, we obtain I=|;+ gb u? + 5112 - Quil. (25)
E=at)u+b(t), (14) o _ .
_ 2 1 We now show that this is indeed the Courant-Snyder invari-
¢ = at)u” +clt)u+d(t), (15) ant. Letb = 2w?, Eq. (18) becomes
wherea(t), b(t), c(t) andd(t) satisf
(1), b(2), e(t) ®) Y Wil + 3w + dkw + Fw? =0, (26)
i+rka=0, (16) o '
i+ rd=0. (17) which is equivalent to
b+ 4rb + 2/b =0, (18) Bwh + hw =0, (27)
. . 1
é—gzo. (19) ha—l—mw—E. (28)
Equations (16)-(19) have eight degrees of freedom. Ther#l other words, 1
fore, the Lie algebrg is 8D, which is the maximum dimen- h== _3
w

sion that a second-order ODE can have for the Lie algebra
of its symmetry group. The sub-algebras generated,by for an arbitrary constant. Thus, we obtain the envelope
d, andb are independent, and have the dimensiof,af, ~€quation -

and3 respectively. From Eq. (19), we obtain W+ Kw — = 0. (29)

b In terms ofw, the infinitesimal generator is
=+, (20) v g

There is one degree of freedom associated wjth vos = 2w2§ +dwduz-, (30)
According to the basic result of Noether’s theorem, ev-

ery infinitesimal divergence symmetry corresponds to a@nd the invariantin Eq. (25) becomes the familiar Courant-

invariant [12]. Here, an infinitesimal divergence symmetrysnyder invariant

is defined as a vector field satisfying

I=(w*+ iz)u2 +w?i? — 2uwiuds . (31)
prPu(L) + Lg = dB(t, ) (21) ) v

ds dt In this sense, we can refer to the symmetry group gener-
for some functiomB(¢, v). In Eq. (21),L is the Lagrangian ated by the infinitesimal generator in Eq. (30) as Courant-
for Eq. (1). It can be shown that Snyder symmetry. The Lie algebra of the Courant-Snyder

symmetry is 3D becauseis an arbitrary constant in addi-
pr(z)U(L) _ ﬁ + gd_L (22) tion to the two arbitrary constants needed to specify a par-

d dt ticular solution forw. Not surprisingly, Eq. (18) is exactly

for some functionA(t, u), from which it follows thatf =  the same as that for the well-knowirfunction in Courant-

B — A — L¢ is an invariant ifv is an infinitesimal diver- Snyder theory. .

gence symmetry. It can also be demonstrated that every The 3D subspace incomplementary tg, does not pro-
infinitesimal divergence symmetry belongs to the Lie algeduce any invariant. The one degree of freedom associated
brag for the symmetry groug of Eq. (1). Since we have With co in Eq. (20) corresponds to

obtained the Lie algebra to determine all of the invariants P
of Eq. (1), it is only necessary to verify which subspace of v =cotig -
g consists of infinitesimal divergence symmetries. It turns v

out that the infinitesimal divergence symmetries form a 5Which generates the symmetry group of the scaling trans-

subspace; of the 8D Lie algebrg. It is given by formationa = exp(co7)u, which is obviously due to the
i fact that Eq. (1) is linear. The sub-algebragfenerated
v — b(t)g i @UJJF d(t) 9 . (23) by a has 2 degrees of frv_sedor_n, but currently it does not
ot 2 ou seem to have any appreciable importance.




SYMMETRY GROUP FOR THE Here, I andC are constants. Equation (41) recovers the

ENVELOPE EQUATION Courant-Snyder theory, Eqgs. (1) and (3), as a special case
) whene; = 0, ande, = 1. Another application of Theorem
We now apply the symmetry group analysis to the eny and Eq. (41) is in the numerical solution of the envelope

velope equation [Eq. (29)] itself. The symmetry gralp  equation [Eq. (3)]. For a periodic focusing lattigét), it

for Eg. (29) should be a subgroup of the symmetry gréup s desirable to find matched solutions to construct ghe

for Eq. (1), because the special case of Eq. (29kfer 0 fynctions. Normally, this is done by a shooting method,

is Eq. (1). Carrying out a similar procedure to that for deynere Eq. (3) is solved numerically many times, iteratively.

riving Egs. (16)-(19), we obtain the Lie algehya for G, Using Eq. (41) for the case whetg = =, = 1, we can

as 9 9 have a much more efficient algorithm, where Eqg. (3) needs
Uy = 2wfa + 4wyt e (32) tobe numerically solved only once. First, we pick arbitrary

L v initial conditions forw (¢ = 0) = wo andii(t = 0) = iy at
wherew, satisfies another envelope equation t = 0, and solve numerically fow from¢ = 0 to one lattice

. 1 _ period att = T. Denote this solution as(t). Applying
w1t KWL = e 0 (33) Eq. (41), the general solution far, is
with an arbitrary constard;. Further analysis shows that > ) 1/2
vy, is an infinitesimal divergence symmetry with the invari- 4, = 4, (I — VI? —4sin[-2(¢ + C)]) . (42)
ant 2
wi \ 2 w\? = ‘1 d 43
1:5(—1) +al<—> + (wiy —iwy)? . (34) V=)t (43)
w w1 s
We summarize the above result in the following theorem. By selecting I andC' such that
Theorem 1. For an arbitrary functions (t) and w, ws wy(0) = wy(T) andw,(0) = wy(T), (44)
satisfying
. we obtain the matched solution to Eq. (3) for a periodic fo-
Wy + kKwy = —13 , (35) cusing lattices(t) = x(t + T).
wy
. e
iy + Ry = (36) REFERENCES
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or equivalently,

(I — VI? — de1esin [—2/E2(¢ + O)] ) 12
w1 = Wa :
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