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Abstract

The single-particle dynamics in a time-dependent focus-
ing field is examined. The existence of the Courant-Snyder
invariant is fundamentally a result of the corresponding
symmetry admitted by the oscillator equation with time-
dependent frequency. A careful analysis of the admitted
symmetries reveals a deeper connection between the non-
linear envelope equation and the oscillator equation. A
general theorem regarding the symmetries and invariants
of the envelope equation, which includes the existence of
the Courant-Snyder invariant as a special case, is demon-
strated. The symmetries of the envelope equation enable a
fast algorithm for finding matched solutions without using
the conventional iterative shooting method.

INTRODUCTION
The Courant-Snyder invariant for an oscillator with time-

dependent frequency is an important concept for accelera-
tor physics [1]. For an oscillation amplitudeu(t) satisfying

ü+ κ(t)u = 0 , (1)

whereκ(t) is the time-dependent frequency coefficient, the
Courant-Snyder invariant is given by [2]

I =
u2

w2
+ (ẇu−wu̇)2 . (2)

Here,w = w(t) is any solution of the envelope equation

ẅ + κ(t)w − 1
w3

= 0 . (3)

This classical result has been derived many times using
different methods. Initially, it was derived by Courant
and Snyder in 1958 [2] using the basic techniques for
Hill’s equation. It was rediscovered by Lewis [3] using
the asymptotic method developed by Kruskal [4]; Eliezer
and Gray [5] demonstrated a physical interpretation of the
invariant; a derivation using linear canonical transforma-
tion was given by Leach [6]; and Lutzky re-derived the re-
sult using Noether’s theorem [7]. A short review of vari-
ous derivation methods can be found in Ref. [8]. We note
that the basic concept of the Courant-Snyder invariant may
had appeared earlier in other formats. For example, Kul-
srud obtained two equations forw which are equivalent to
Eq. (3) [9]. The concept of an envelope functionw and
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its notation, we believe, can be attributed to a paper by
Brikhoff [10], which predated the 1911 Solvay Conference,
where, according to commonly accepted history, the con-
cept of adiabatic invariant for a time-dependent harmonic
oscillator was first discussed by Lorentz and Einstein [11].

In this paper, we first re-examine the time-dependent
harmonic oscillator equation from the viewpoint of the
symmetry groupG for Eq. (1). It is shown that the sym-
metry group for Eq. (1) is generated by an 8D Lie alge-
bra (infinitesimal generator)g, which contains the 3D sub-
algebragCS that corresponds to the Courant-Snyder invari-
ant. The envelope equation appears naturally as the deter-
mining equation forgCS.We then investigate the symmetry
group of the envelope equation itself. It is interesting that
the determining equation for the Lie algebragw of the sym-
metry groupGw for the envelope equation is an envelope
equation itself. A theorem regarding the symmetry and the
invariant for envelope equations is presented, together with
applications.

SYMMETRY GROUP FOR
TIME-DEPENDENT OSCILLATOR

EQUATION

A symmetry group can be used to reduce the order of
differential equations and to generate invariants [12]. We
search for vector fieldsv in (t, u) space

v = ξ(t, u)
∂

∂t
+ φ(t, u)

∂

∂u
(4)

as infinitesimal generators (Lie algebra)g for the symme-
try transformation groupG, which leaves Eq. (1) invariant.
The vector fieldv will induce a vector field in(t, u, u̇, ü)
space, i.e., the prolongation ofv denoted bypr(2)v,

pr(2)v = ξ
∂

∂t
+ φ

∂

∂u
+ φu ∂

∂u̇
+ φuu ∂

∂ü
, (5)

φu ≡ φt + (φu − ξt)u̇− ξuu̇
2 , (6)

φuu ≡ −3ξuu̇ü+ (φu − 2ξt)ü − ξuuu̇
3 (7)

+ (φuu − 2ξtu)u̇2 + (2φut − ξtt)u̇+ φtt .

The determining equation forv to be an infinitesimal gen-
erator forG is

pr(2)v [ü+ κ(t)u] = φuu + κφ+ ξκ̇u = 0 . (8)

Substituting the expression forφuu, we obtain

−ξuuu̇
3 + (φuu − 2ξtu)u̇2 + (3κξuu+ 2φut − ξtt)u̇
−(φu − 2ξt)κu+ φtt + κφ+ κ̇ξu = 0 . (9)



Since Eq. (9) should be valid everywhere in(t, u, u̇) space,
the coefficients oḟu3, u̇2, andu̇ should vanish, i.e.,

ξuu = 0 , (10)

φuu − 2ξtu = 0 , (11)

3κξuu+ 2φut − ξtt = 0 , (12)

−κ (φu − 2ξt) u+ φtt + κφ+ κ̇ξu = 0 . (13)

Equations (10)-(13) can be used to find the solutions forξ
andφ. After some algebra, we obtain

ξ = a(t)u+ b(t) , (14)

φ = ȧ(t)u2 + c(t)u+ d(t) , (15)

wherea(t), b(t), c(t) andd(t) satisfy

ä + κa = 0 , (16)

d̈+ κd = 0 , (17)
...
b + 4κḃ+ 2κ̇b = 0 , (18)

ċ− b̈

2
= 0 . (19)

Equations (16)-(19) have eight degrees of freedom. There-
fore, the Lie algebrag is 8D, which is the maximum dimen-
sion that a second-order ODE can have for the Lie algebra
of its symmetry group. The sub-algebras generated bya,
d, andb are independent, and have the dimension of2, 2,
and3 respectively. From Eq. (19), we obtain

c =
ḃ

2
+ c0 . (20)

There is one degree of freedom associated withc0.
According to the basic result of Noether’s theorem, ev-

ery infinitesimal divergence symmetry corresponds to an
invariant [12]. Here, an infinitesimal divergence symmetry
is defined as a vector field satisfying

pr(2)v(L) + L
dξ

ds
=
dB(t, u)
dt

(21)

for some functionB(t, u). In Eq. (21),L is the Lagrangian
for Eq. (1). It can be shown that

pr(2)v(L) =
dA

dt
+ ξ

dL

dt
(22)

for some functionA(t, u), from which it follows thatI =
B − A − Lξ is an invariant ifv is an infinitesimal diver-
gence symmetry. It can also be demonstrated that every
infinitesimal divergence symmetry belongs to the Lie alge-
brag for the symmetry groupG of Eq. (1). Since we have
obtained the Lie algebrag, to determine all of the invariants
of Eq. (1), it is only necessary to verify which subspace of
g consists of infinitesimal divergence symmetries. It turns
out that the infinitesimal divergence symmetries form a 5D
subspaceg1 of the 8D Lie algebrag. It is given by

v = b(t)
∂

∂t
+

[
ḃ(t)
2
u+ d(t)

]
∂

∂u
. (23)

For the 2D sub-algebrav = d∂/∂u associated withd, it is
easy to show that the invariant is

I = uḋ− u̇d , (24)

which is the well-known Wronskian for linear equations.
For the 3D Lie algebrav = b∂/∂ξ + u(ḃ/2)∂/∂u associ-
ated withb, the invariant is found to be

I =

[
b̈

4
+
κ

2
b

]
u2 +

b

2
u̇2 − ḃ

2
uu̇ . (25)

We now show that this is indeed the Courant-Snyder invari-
ant. Letb = 2w2, Eq. (18) becomes

w
...
w + 3ẇẅ + 4κwẇ + κ̇w2 = 0 , (26)

which is equivalent to

3ẇh+ ḣw = 0 , (27)

h ≡ ẅ + κw − 1
w3

. (28)

In other words,

h =
ε− 1
w3

for an arbitrary constantε. Thus, we obtain the envelope
equation

ẅ + κw − ε

w3
= 0 . (29)

In terms ofw, the infinitesimal generator is

vCS = 2w2 ∂

∂t
+ 4wẇu

∂

∂u
, (30)

and the invariant in Eq. (25) becomes the familiar Courant-
Snyder invariant

I = (ẇ2 +
ε

w2
)u2 +w2u̇2 − 2wẇuu̇ . (31)

In this sense, we can refer to the symmetry group gener-
ated by the infinitesimal generator in Eq. (30) as Courant-
Snyder symmetry. The Lie algebra of the Courant-Snyder
symmetry is 3D becauseε is an arbitrary constant in addi-
tion to the two arbitrary constants needed to specify a par-
ticular solution forw. Not surprisingly, Eq. (18) is exactly
the same as that for the well-knownβ function in Courant-
Snyder theory.

The 3D subspace ing complementary tog1 does not pro-
duce any invariant. The one degree of freedom associated
with c0 in Eq. (20) corresponds to

v = c0u
∂

∂u
,

which generates the symmetry group of the scaling trans-
formationũ = exp(c0τ )u, which is obviously due to the
fact that Eq. (1) is linear. The sub-algebra ofg generated
by a has 2 degrees of freedom, but currently it does not
seem to have any appreciable importance.



SYMMETRY GROUP FOR THE
ENVELOPE EQUATION

We now apply the symmetry group analysis to the en-
velope equation [Eq. (29)] itself. The symmetry groupGw

for Eq. (29) should be a subgroup of the symmetry groupG
for Eq. (1), because the special case of Eq. (29) forε = 0
is Eq. (1). Carrying out a similar procedure to that for de-
riving Eqs. (16)-(19), we obtain the Lie algebragw for Gw

as

vw = 2w2
1

∂

∂t
+ 4w1ẇ1

∂

∂w
, (32)

wherew1 satisfies another envelope equation

ẅ1 + κw1 − ε1
w3

1

= 0 (33)

with an arbitrary constantε1. Further analysis shows that
vw is an infinitesimal divergence symmetry with the invari-
ant

I = ε
(w1

w

)2

+ ε1

(
w

w1

)2

+ (wẇ1 − ẇw1)
2 . (34)

We summarize the above result in the following theorem.

Theorem 1. For an arbitrary functionκ (t) andw1, w2

satisfying

ẅ1 + κw1 =
ε1
w3

1

, (35)

ẅ2 + κw2 =
ε2
w3

2

, (36)

whereε1 andε2 are real constants, the quantity

I = ε1

(
w2

w1

)2

+ ε2

(
w1

w2

)2

+ (w2ẇ1 − ẇ2w1)
2 (37)

is an invariant.

This result was obtained by Lutzky in a less general
form [7], and it can be straightfowardly verified by direct
calculation. The invariant in Eq. (37) allows us to solve for
the general solutions forw1 in terms of a special solution
for w2. Let q = w1/w2, we obtain

I = ε1
1
q2

+ ε2q
2 +

(
dq

dψ

)2

, (38)

ψ ≡
∫

1
w2

2

dt . (39)

Equation (38) can be solved forq in terms ofψ as

q2 =
I −√

I2 − 4ε1ε2 sin
[−2

√
ε2(ψ + C)

]
2ε2

, (40)

or equivalently,

w1 = w2

(
I −√

I2 − 4ε1ε2 sin
[−2

√
ε2(ψ +C)

]
2ε2

)1/2

.

(41)

Here,I andC are constants. Equation (41) recovers the
Courant-Snyder theory, Eqs. (1) and (3), as a special case
whenε1 = 0, andε2 = 1. Another application of Theorem
1 and Eq. (41) is in the numerical solution of the envelope
equation [Eq. (3)]. For a periodic focusing latticeκ(t), it
is desirable to find matched solutions to construct theβ
functions. Normally, this is done by a shooting method,
where Eq. (3) is solved numerically many times, iteratively.
Using Eq. (41) for the case whereε1 = ε2 = 1, we can
have a much more efficient algorithm, where Eq. (3) needs
to be numerically solved only once. First, we pick arbitrary
initial conditions forw(t = 0) = w0 andẇ(t = 0) = ẇ0 at
t = 0, and solve numerically forw from t = 0 to one lattice
period att = T. Denote this solution asws(t). Applying
Eq. (41), the general solution forwg is

wg = ws

(
I −√

I2 − 4 sin [−2(ψ + C)]
2

)1/2

, (42)

ψ =
∫ t

0

1
w2

s

dt . (43)

By selectingI andC such that

wg(0) = wg(T ) andẇg(0) = ẇg(T ) , (44)

we obtain the matched solution to Eq. (3) for a periodic fo-
cusing latticeκ(t) = κ(t+ T ).
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