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Abstract

Properties of the multi-species electromagnetic Weibel
instability are investigated for an intense ion beam prop-
agating through background plasma. Assuming that the
background plasma electrons provide complete charge and
current neutralization, detailed linear stability properties
are calculated within the framework of a macroscopic cold-
fluid model for a wide range of system parameters.

INTRODUCTION

High energy ion accelerators, transport systems and stor-
age rings [1, 2] are used for fundamental research in high
energy and nuclear physics and for applications such as
heavy ion fusion. Charged particle beams are subject to
various collective processes that can deteriorate the beam
quality [3, 4, 5, 6, 7, 8]. In the neutralized drift com-
pression and target chamber regions for ion-beam-driven
high energy density physics applications and heavy ion fu-
sion, the intense ion beam experiences collective interac-
tions with the background plasma. In this paper, we inves-
tigate theoretically properties of the multi-species electro-
magnetic Weibel instability for an intense ion beam propa-
gating through background plasma [5, 6, 7]. Assuming that
the background plasma electrons provide complete charge
and current neutralization, detailed linear stability proper-
ties are calculated within the framework of a macroscopic
cold-fluid model for a wide range of system parameters.

THEORETICAL MODEL

We make use of a macroscopic fluid model [1, 5, 6] to
describe the interaction of an intense ion beam (j = b)
with background plasma electrons and ions (j = e, i). The
charge and rest mass of a particle of species j (j = b, e, i)
are denoted by ej and mj , respectively. In equilibrium, the
steady-state (∂/∂t = 0) average flow velocities are taken
to be in the z-direction, V0

j (x) = V 0
zj(r)êz = βj(r)cêz ,

and cylindrical symmetry is assumed (∂/∂θ = 0). Ax-
ial motions are generally allowed to be relativistic, and the
directed axial kinetic energy is denoted by (γj − 1)mjc

2,
where γj(r) = [1− β2

j (r)]−1/2 is the relativistic mass fac-
tor of a fluid element. Furthermore, the analysis is car-
ried out in the paraxial approximation, treating the velocity
spread of the beam particles as small in comparison with
βbc. Denoting the equilibrium density profile by n0

j(r)
(j = b, e, i), the corresponding equilibrium self-electric
field, E0(x) = E0

r (r)êr , and azimuthal self-magnetic
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field, B0(x) = B0
θ (r)êθ , are determined self-consistently

from the steady-state Maxwell equations, where r = (x2 +
y2)1/2 is the radial distance from the axis of symmetry.

In the macroscopic stability analysis of the Weibel in-
stability, we specialize to the case of axisymmetric, elec-
tromagnetic perturbations with ∂/∂θ = 0 and ∂/∂z =
0, and perturbed quantities are expressed as δψ(r, t) =
δψ(r) exp(−iωt) where Imω > 0 corresponds to instabil-
ity (temporal growth). For the perturbations, the perturbed
field components are δE(x, t) = δEr(r, t)êr+δEz(r, t)êz

and δB(x, t) = δBθ(r, t)êθ . It has been shown previously
that a sufficiently strong self-magnetic field B 0

θ (r) �= 0
tends to reduce the growth rate of the Weibel instability in
intense beam-plasma systems [8]. For present purposes, we
specialize to the case of a charge-neutralized and current-
neutralized beam-plasma system with∑

j=b,e,i

n0
j(r)ej = 0 ,

∑
j=b,e,i

n0
j(r)βjej = 0 , (1)

where βj is taken to be independent of r for simplicity. It
then follows from the steady-state Maxwell equations that
E0

r = 0 = B0
θ . Making use of a macroscopic cold-fluid

model based on the linearized fluid-Maxwell equations [1],
some straightforward algebraical manipulation yields the
eigenvalue equation [5, 6]
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γ2

j c
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)
δEz = 0, (2)

where γj = (1−β2
j )−1/2 is the relativistic mass factor, and

ω2
pj(r) = 4πn0

j(r)e
2
j/γjmj .

Equation (2) is the desired eigenvalue equation for
axisymmetric, electromagnetic perturbations with polar-
ization δE = δErêr + δEz êz and δB = δBθêθ,
with the terms proportional to

∑
j=b,e,i β

2
jω

2
pj(r) and∑

j=b,e,i βjω
2
pj(r) providing the free energy to drive the

Weibel instability. Equation (2) can be integrated numer-
ically to determine the eigenvalue ω2 and eigenfunction
δEz(r) for a wide range of beam-plasma density profiles
n0

j(r) [6]. As discussed in Sec. 3, analytical solutions are
also tractable for the case of flat-top (step-function) density
profiles. As a general remark, when

∑
j=b,e,i β

2
jω

2
pj(r) �=

0 and
∑

j=b,e,i βjω
2
pj(r) �= 0, Eq. (2) supports both stable

fast-wave solutions (Imω = 0, |ω/ck⊥| > 1) and unsta-
ble slow-wave solutions (Imω > 0, |ω/ck⊥| < 1). Here,
|k⊥| ∼ |∂/∂r| is the characteristic radial wavenumber of



the perturbation. Moreover, Eq. (2) also supports stable
plasma oscillation solutions with predominantly longitudi-
nal polarization associated with the factor proportional to
[ω2 −∑

j=b,e,i ω
2
pj(r)]

−1. Finally, for a perfectly conduct-
ing cylindrical wall located at r = rw, the eigenvalue equa-
tion (2) is to be solved subject to the boundary condition

δEz(r = rw) = 0 . (3)

MULTISPECIES WEIBEL INSTABILITY

As an example that is analytically tractable, we consider
the case where the density profiles are uniform both inside
and outside the beam (Fig. 1) with

n0
j(r) = n̂i

j = const., j = b, e, i , (4)

for 0 ≤ r < rb, and

n0
j(r) = n̂0

j = const., j = e, i , (5)

for rb < r ≤ rw. Here, the superscript “i” (“o”) denotes
inside (outside) the beam, and n̂0

b = 0 is assumed. Consis-
tent with Eq. (1),

∑
j=b,e,i n̂

i
jej = 0 =

∑
j=b,e,i n̂

i
jβjej ,

and
∑

j=e,i n̂
0
jej = 0 =

∑
j=e,i n̂

0
jβjej are assumed. We

also take βj = 0 (j = e, i) in the region outside the beam
(rb < r ≤ rw). The subsequent analysis of the eigen-
value equation (2) is able to treat the three cases: (a) beam-
plasma-filled waveguide (rb = rw); (b) vacuum region out-
side the beam (rb < rw and n̂0

j = 0, j = e, i); and (c)
plasma outside the beam (rb < rw and n̂0

j �= 0, j = e, i).
Referring to Eqs. (2), (4) and (5) it is convenient to in-

troduce the constant coefficients

T 2
i (ω) =


ω2

c2
−

∑
j=b,e,i

ω̂i2
pj

γ2
j c

2


 ×


1 +

∑
j=b,e,i

β2
j ω̂
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pj
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i2
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−1

(6)

for 0 ≤ r < rb, and

T 2
0 (ω) = −

[
ω2

c2
−

∑
j=e,i

ω̂02
pj

c2

]
(7)

for rb < r ≤ rw, where ω̂i2
pj = 4πn̂i

je
2
j/γjmj , j = b, e, i,

and ω̂02
pj = 4πn̂0

je
2
j/mj , j = e, i. We denote the eigen-

function inside the beam (0 ≤ r < rb) by δEI
z (r) and the

eigenfunction outside the beam (rb < r ≤ rw) by δEII
z (r).

From Eqs. (2), (6) and (7) the solutions to Eq. (2) that are
regular at r = 0, continuous at r = rb, and vanish at the
conducting wall are given by

δEI
z (r) = AJ0(Tir) , 0 ≤ r < rb , (8)

δEII
z (r) = AJ0(Tirb)× (9)

K0(T0rw)I0(T0r) −K0(T0r)I0(T0rw)
K0(T0rw)I0(T0rb) −K0(T0rb)I0(T0rw)

rb < r ≤ rw ,

where A is a constant, J0(x) is the Bessel function of the
first kind of order zero, and I0(x) and K0(x) are modified
Bessel functions of order zero.

The remaining boundary condition is obtained by inte-
grating the eigenvalue equation (2) across the beam surface
at r = rb. Making use of Eqs. (4) and (5), we operate

on Eq. (2) with
∫ rb(1+ε)

rb(1−ε) drr · · · for ε → 0+. This readily
gives the condition [5, 6]
1 +

∑
j=b,e,i

β2
j ω̂

i2
pj

ω2
+

(
∑

j=b,e,i βjω̂
i2

pj)
2

ω2[ω2 − ∑
j=b,e,i ω̂

i2
pj ]

)
Tirb× (10)

J ′
0(Tirb)

J0(Tirb)
= T0rb

K0(T0rw)I ′0(T0rb) −K ′
0(T0rb)I0(T0rw)

K0(T0rw)I0(T0rb) −K0(T0rb)I0(T0rw)
,

where Ti(ω) and T0(ω) are defined in Eqs. (6) and (7), and
I ′0(x) = (d/dx)I0(x), J ′

0(x) = −(d/dx)J0(x), etc.
Equation (10) constitutes a closed transcendental disper-

sion relation that determines the complex oscillation fre-
quency ω for electromagnetic perturbations about the step-
function profiles in Fig. 1. As noted earlier, the dispersion
relation has both fast-wave and slow-wave (Weibel-type)
solutions, as well as a predominantly longitudinal (modi-
fied plasma oscillation) solution. Moreover, Eq. (10) can
be applied to the case of a beam-plasma-filled waveguide
(rb = rw), or to the case where the region outside the beam
(rb < r ≤ rw) corresponds to vacuum (n̂0

j = 0, j = e, i)
or background plasma (n̂0

j �= 0, j = e, i) [6]. For present
purposes, we consider the case where there is a stationary
background plasma (n̂0

j �= 0, βj = 0, j = e, i) in the re-
gion outside the beam (rb < r ≤ rw).

It is convenient to introduce the dimensionless quantities
〈β2〉 and 〈β〉 defined by

〈β2〉 =

∑
j=b,e,i β

2
j ω̂

i2

pj∑
j=b,e,i ω̂

i2
pj

, 〈β〉 =

∑
j=b,e,i βjω̂

i2

pj∑
j=b,e,i ω̂

i2
pj

, (11)

and the dimensional quantity Γw derined by

Γw ≡ [〈β2〉 − 〈β〉2]1/2

(1 − 〈β2〉)1/2
(

∑
j=b,e,i

ω̂i2

pj)
1/2 . (12)

The quantity Γw provides a convenient unit in which to
measure the growth rate Imω of the Weibel instability in
the subsequent numerical analysis of the general disper-
sion relation (10). For present purposes, we consider a
positively charged ion beam (j = b) propagating through
background plasma electrons and ions (j = e, i). The
charge states are denoted by eb = +Zbe, ee = −e, and
ei = +Zie, and the plasma electrons are assumed to carry
the neutralizing current (βe �= 0), whereas the plasma ions
are taken to be stationary (βi = 0). The conditions for
charge neutralization,

∑
j=b,e,i n̂

i
jej = 0, and current neu-

tralization,
∑

j=b,e,i n̂
i
jejβj = 0, then give

n̂i
e = Zbn̂

i
b + Zin̂

i
i , βe =

βbZbn̂
i
b

Zbn̂i
b + Zin̂i

i

. (13)



Except for the case of a very tenuous beam (Z bn̂
i
b 

Zin̂
i
i), note from Eq. (13) that βe can be a substantial frac-

tion of βb. Careful examination of the expression for Γw in
Eq. (12) for βi = 0 shows that

Γ2
w =

1
(1 − 〈β2〉) ×[

(β2
e ω̂

i2

pe + β2
b ω̂

i2

pb)ω̂
i2
pi + (βb − βe)2ω̂i2

peω̂
i2

pb∑
j=b,e,i ω̂

i2
pj

]
. (14)

For ω̂i2

pb, ω̂i2

pi  ω̂i2

pe, it follows that Eq. (14) is given to
good approximation by

Γ2
w � 1

(1 − β2
e )

[β2
e ω̂

i2

pi + (βb − βe)2ω̂i2

pb] . (15)

Note from Eq. (15) that Γw involves the (slow) plasma fre-
quencies of both the beam ions and the plasma ions.

In the remainder of Sec. 3 we consider the case of a
cesium ion beam with Zb = 1 and βb = 0.2 propagat-
ing through a neutralizing background argon plasma with
Zi = 1, n̂i

i = (1/2)n̂i
e = n̂i

b, and βe = 0.1 [see
Eq. (13)]. Typical numerical solutions to Eq. (10) for the
unstable branch are illustrated in Fig. 2 for the choice of
system parameters rw = 3rb, βb = 0.2, βe = 0.1,
n̂i

i = n̂i
e/2 = n̂i

b = n̂o
e = n̂o

i , and ω̂i
perb/c = 3. Shown

in Fig. 2 is a plot of the normalized growth rate (Imω)/Γw

versus radial mode number n, and a plot of the eigenfunc-
tion δEz(r) versus r/rw for mode number n = 5. It is
clear from Fig. 2 and the analysis in Sec. 3 that the Weibel
instability has characteristic growth rate Γw and can be par-
ticularly virulent for an intense ion charge bunch propagat-
ing through background plasma that provides full charge
and current neutralization. It is therefore important to as-
sess the relative importance of the electrostatic two-stream
and electromagnetic Weibel instabilities for similar system
parameters [5, 6].
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Figure 1: Schematics of the density profiles of the beam
ions (n̂i

b) and the plasma ions and electrons inside (n̂i
i and

n̂i
e) and outside (n̂o

i and n̂o
e) the beam.
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Figure 2: Plots of (a) Weibel instability growth rate
(Imω)/Γw versus radial mode number n, and (b) eigen-
function δÊz(r) versus r/rw for n = 5 obtained from
Eq. (10). System parameters are rb = rw/3, βb = 0.2,
βe = 0.1, n̂i

i = n̂e/2 = n̂i
b = n̂o

e = n̂o
i , ω̂i

perb/c = 3.


