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Abstract

In neutral plasmas with a uniform magnetic field and strongly anisotropic distribution function ðTk=T?51Þ an

electrostatic Harris-type collective instability may develop if the plasma is sufficiently dense. Such anisotropies develop

naturally in accelerators, and a similar instability may lead to a deterioration of the beam quality in a one-component

nonneutral charged particle beam. The instability may also lead to an increase in the longitudinal velocity spread, which

would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion

fusion experiments. This paper reports the results of recent numerical studies of the temperature anisotropy instability

using the newly developed Beam Eigenmodes And Spectra (bEASt) code for space-charge-dominated, low-emittance

beams with large tune depression ðn=n051Þ: Such high-intensity beams are relevant to next-step experiments such as the

Integrated Beam Experiment (IBX), which would serve as proof-of-principal experiment for heavy-ion fusion.
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1. Introduction

It is well known that in electrically neutral
plasmas with uniform magnetic field and strongly
anisotropic electron distribution ðTke=T?e51Þ;
where subscript k denotes along the magnetic
field, an electrostatic (Harris-like) collective in-
stability may develop if the plasma is sufficiently
e front matter r 2005 Elsevier B.V. All rights reserve
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dense that ope4oce; where ope ¼ ð4pe2n=mÞ
1=2 is

the electron plasma frequency and oce ¼ eB=mc is
the electron cyclotron frequency [1]. Such condi-
tions develop naturally in accelerators for heavy-
ion beams used for heavy-ion fusion. Indeed, due
to conservation of energy for particles with charge
eb and mass mb accelerated by a voltage V, the
energy spread of particles in the beam does not
change, and (nonrelativistically) DEbi ¼ mbDv2

bi=2

¼ DEbf ¼ mbVbDvbf ; where Vb ¼ ð2ebV=mbÞ
1=2 is

the average beam velocity after acceleration.
d.
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Therefore, the velocity spread-squared, or equiva-
lently the temperature, changes according to
Tkbf ¼ T2

kbi=2ebV (for a nonrelativistic beam). In
addition, the transverse temperature may increase
due to nonlinearities in the applied focusing field,
the self-field forces, nonstationary beam profiles,
and beam mismatch. For the case of charged
particle beams in accelerators the cyclotron
oscillations in the applied magnetic field are
replaced by the betatron oscillations of the beam
particles in the combined applied and self-gener-
ated fields. Heavy-ion fusion experiments require
transporting high-current beams when the average
depressed betatron frequency of the beam particles
is much smaller than the average plasma frequency
of the beam particles. The resulting anisotropy-
driven instability may lead to a deterioration of the
beam quality and an increase in the longitudinal
velocity spread, which would make focusing the
beam difficult and impose a limit on the minimum
spot size achievable in heavy-ion fusion experi-
ments.

Historically, the temperature anisotropy in-
stability in intense charged particle beams was
first studied analytically by Wang and Smith [2]
for axisymmetric perturbations about the beam
with a Kapchinskij–Vladimirskij (KV) distribu-
tion assuming infinite anisotropy with Tkb=T?b ¼

0: They discovered a large number of unstable
modes, some of which are remnants of the
unstable transverse spectra of the KV distribu-
tion [3]. This work has been recently extended
to three-dimensional perturbations by Wang [4].
Since the KV distribution is unstable at sufficiently
high beam intensity even for purely transverse
perturbations [3], when the temperature anisotro-
py does not play a role, it was difficult to identify
which modes were driven unstable by the tem-
perature anisotropy. The first 3D particle-in-cell
simulations of the Harris-type instability in intense
beams were carried out by Friedman, et al. [5–7]
using the WARP code. They observed a rapid
temperature ‘equilibration’ process of KV beams
with large temperature anisotropy. Simulations
were carried out for both smooth-focusing and
alternating-gradient focusing systems, with quali-
tatively similar results. Friedman et al., conjec-
tured that the initial rapid heating in the
longitudinal direction may be the result of an
anisotropy-driven instability reminiscent of the
Harris instability in neutral plasmas with the
transverse betatron motion replacing the cyclo-
tron motion. Later simulation studies using
the WARP code were conducted by Lund, et al.
[8,9] using a semi-Gaussian distribution to avoid
the numerous unstable modes introduced by the
KV distribution, which has a highly inverted
distribution in phase space. This paper also
reported initial studies of the instability thresholds
ðTkb=T?bÞ as a function of the depressed tune
ðn=n0Þ for semi-Gaussian and KV distribu-
tions. These and other numerical studies [10] of
this instability used the electrostatic particle-in-cell
(PIC) code WARP, which is sufficiently noisy
that resolving the linear stage of instability with
sufficient accuracy is very difficult. Also, unlike
the KV distribution, the semi-Gaussian distri-
bution is not a rigorous equilibrium solution
ðq=qt ¼ 0Þ of the Vlasov–Maxwell equations about
which to perturb. The departure of the initial
distribution from a self-consistent equilibrium can
inevitably lead to mode excitations which are
confused with those due to the anisotropy-driven
instability.

In our previous studies of the anisotropy-driven
instability in intense beams [11–13], we have
addressed the above problems by studying the
evolution of perturbations about a bi-Maxwellian
distribution, which is a rigorous steady-state
equilibrium solution of the Vlasov–Maxwell equa-
tions, using the nonlinear perturbative Beam
Equilibrium, Stability and Transport (BEST) code
[14]. The bi-Maxwellian distribution is known to
be a stable equilibrium with respect to transverse
perturbations [15], and does not support the
spurious modes of the KV distribution. The BEST
code implements the nonlinear df scheme [16]
which is fully equivalent to the original nonlinear
Vlasov–Maxwell equations. In the df approach,
the simulation particles are used to represent only
a small part of the entire distribution df b ¼ f b �

f 0
b; and therefore the noise associated with the

representation of the background distribution f 0
b

in conventional particle-in-cell (PIC) simulations is
removed. Also, the df code, operated in the
‘linearized’ mode, allows the detailed simulation
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of the linear stage of the instability. We have also
developed a simple analytical theory of the
instability for moderately intense beams with bi-
Maxwellian distribution [11,12] using the simpli-
fied assumption of negligible spread in the
depressed betatron frequency, which appears to
capture the main features of the instability and is a
relatively straightforward generalization of the
analysis of the Harris instability to the case of an
intense charged particle beam, including the
important effects of finite transverse geometry
and beam space-charge. The simulation results
clearly show that moderately intense beams with
normalized depressed tune 0:5on̄=n0t0:8 are
linearly unstable to short-wavelength perturba-
tions with k2

zr2
b\1; provided the ratio of long-

itudinal and transverse temperatures is smaller
than some threshold value.

In this paper we extend our previous simulation
studies of this instability [11–13] to the case of
space-charge-dominated, low-emittance beams
with n̄=n0o0:5: Such high-intensity beams are
relevant to next-step experiments such as the
Integrated Beam Experiment (IBX) which would
serve as a proof-of-principal experiment for heavy-
ion fusion. To investigate detailed linear stability
properties numerically, we make use of the newly
developed Beam Eigenmodes And Spectra
(bEASt) code described below.
2. Instability mechanism

In the following analysis, it is convenient to
introduce the effective depressed betatron fre-
quency ob?: For simplicity, the analysis is carried
out in the beam frame (Vb ¼ 0). It can be shown
[17] that for the bi-Maxwellian equilibrium dis-
tribution assumed in Eq. (17), the mean-square
beam radius r2

b defined by

r2
b ¼ hr2i ¼

R
dr r3n0

bðrÞR
dr rn0

bðrÞ
(1)

is related exactly to the line density Nb ¼

2p
R

dr rn0
bðrÞ; and the transverse beam tempera-

ture T?b by the equilibrium radial force balance
equation [17]

o2
f r2

b ¼
Nbe2

b

mb
þ

2T?b

mb
(2)

where r2
b ¼ ðr2Þ is the mean-squre radius, eb and mb

are the charge and mass, respectively, of a beam
particle and of ¼ const: is the transverse fre-
quency associated with the applied focusing field
in the smooth-focusing approximation. Eq. (2) can
be rewritten as

o2
f �

1

2
ō2

pb

� �
r2
b ¼

2T?b

mb
(3)

where we have introduced the effective average

beam plasma frequency ōpb defined by

r2
bō

2
pb 


Z rw

0

dr ro2
pbðrÞ ¼

2e2
bNb

mb
. (4)

Then, Eq. (3) can be used to introduce the effective
average depressed betatron frequency ob? defined
by

o2
b? 
 o2

f �
1

2
ō2

pb

� �
¼

2T?b

mbr2
b

. (5)

The normalized tune depression n̄=n0 is defined by

n̄
n0



ob?

of
¼ ð1 � s̄bÞ

1=2 (6)

where s̄b 
 ō2
pb=2o

2
f is the normalized beam

intensity.
We now illustrate the physical mechanism for

the electrostatic Harris instability in intense
particle beams with a KV distribution. As shown
in Section 3, the dipole mode has the highest
growth rate. Therefore, to illustrate the instability
mechanism, we consider dipole-mode perturba-
tions which in lowest order correspond to a rigid
displacement of the beam centroid in the trans-
verse x-direction (for example). Since a KV beam
has a uniform density profile, the perturbation of
the electrostatic potential inside the beam has the
form

dfðx; tÞ ¼ f̂
x

rb
expðikzz � iotÞ (7)

where f̂ is the perturbation amplitude, o and kz

are the perturbation frequency and the long-
itudinal wavenumber, respectively. We show in
Section 3 that the growth rate is an increasing



ARTICLE IN PRESS

E.A. Startsev et al. / Nuclear Instruments and Methods in Physics Research A 544 (2005) 125–133128
function of kzrb and approaches its limiting value
for k2

zr2
bb1: Therefore, in what follows it is

assumed that k2
zr2

bb1; and that the perturbation
in electric field is given approximately by dE ¼

�ikzdfez:
Next, we consider a beam particle oscillating

longitudinally in the perturbed electric field and at
the same time performing transverse betatron
oscillations. For arbitrary distribution function,
the equilibrium self-electric field is nonlinear, and
the transverse betatron oscillation of the beam
particles will contain many harmonics of the
betatron frequency, which generally depends on
the particle energy and angular momentum. For
purposes of illustrating the physical mechanism,
we consider here the simplified model of equivalent
KV beam where all of the particles oscillate with
the same frequency, equal to the average depressed
betatron frequency ob? defined in Eq. (5), i.e.,

xðtÞ ¼ x̂ cosðob?t þ a0Þ (8)

where a0 is the oscillation phase at t ¼ 0 and x̂ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Hx=mb

p
=ob? is the oscillation amplitude.

Making use of Eqs. (7) and (8), the longitudinal
equation of motion for a beam particle becomes

€z ¼ �ikz

eb

mb
f̂

x̂

rb
cosðob?t þ a0Þe

ikzz0�iot (9)

where we have assumed that beam is cold in
longitudinal direction. Integrating Eq. (9) with
respect to time, we obtain

za ¼ ikz

eb

mb
f̂

x̂

2rb

�
eia

ðo� ob?Þ
2
þ

e�ia

ðoþ ob?Þ
2

" #
eikzz0�iot ð10Þ

where a ¼ a0 þ ob?t: To calculate the average
displacement hziðx; z; tÞ in the z direction we
average over all particles with the same transverse
position x at time t. This gives

hziðx; z; tÞ ¼
1

2
ðza þ z�aÞ

¼ ikz

eb

mb
f̂

x

2rb
�
1

ðo� ob?Þ
2
þ

1

ðoþ ob?Þ
2

" #
eikzz�iot

¼ �
ebdEz

2mb

�
1

ðo� ob?Þ
2
þ

1

ðoþ ob?Þ
2

" #
ð11Þ

where dEz ¼ �ikzdf [see Eq. (7)]. Note that even
though the individual particle motion [Eq. (10)]
has two characteristic frequencies, o� ob? and
oþ ob?; the average quantity hzi oscillates at the
perturbation frequency o [Eq. (11)]. From the
continuity equation for the density perturbation,

qdn

qt
þ

q
qz

n0
qhzi
qt

� �
¼ 0 (12)

we obtain

dn ¼ �n0
qhzi
qz

. (13)

Substituting Eqs. (11) and (13) into Poisson’s
equation = � dE ’ qdEz=qz ¼ 4pebdn; we obtain
the dispersion relation

1 ¼
ō2

pb

2

1

ðo� ob?Þ
2
þ

1

ðoþ ob?Þ
2

" #
(14)

where we have made use of the average value of
plasma frequency introduced in Eq. (4) to take
into account the beam density profile shape in a
lowest-order sense. Using the definition of the
depressed tune [Eqs. (5) and (6)], we can rewrite
Eq. (14) as

n2
n

1 � n2
n

¼
1

ðon=nn � 1Þ2
þ

1

ðon=nn þ 1Þ2

" #
(15)

where nn ¼ n̄=n0 is the normalized depressed tune,
and on ¼ o=of is the normalized mode frequency.
Eq. (15) is easily solved to give

o2
n ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � n2

nÞð1 þ 3n2
nÞ

q
. (16)

From Eq. (16), we obtain that for nnonth
n ¼ffiffiffiffiffiffiffiffi

2=3
p

� 0:82 the mode with lower sign in Eq.
(16) is unstable and purely growing, with max-

imum growth rate ðImoÞmax=of ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=

ffiffiffi
3

p
� 1

q
�

0:39 occurring for nmax
n ¼

ffiffiffiffiffiffiffiffi
1=3

p
� 0:58: Also, for
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very intense beams with nn ! 0; the normalized
growth rate becomes ðImoÞ=of ’ n̄=n0: In Fig.
1(a), the normalized growth rate ðImoÞ=of ;
plotted as a function of the normalized tune
depression n̄=n0 [Eq. (16)], is compared with the
numerical results described in Sections 3 and 4.
Despite the approximations made in the present
simplified model, the agreement is reasonably
good.
3. Description of beam eigenmode and spectra

(bEASt) code

As discussed in Section 1, it is important to
extend theoretical studies of the kinetic stability
properties of anisotropic beams to distribution
functions other than the KV distribution. This is
because the KV distribution has a highly unphy-
sical (inverted) population in transverse phase-
space variables, which provides the free energy to
drive collective instabilities at sufficiently high
beam intensity that are intrinsic to this inverted
population [2–4]. This, of course, can mask the
effects of anisotropy-driven instabilities.

For an arbitrary equilibrium distribution one
cannot solve the stability problem analytically and
must employ numerical techniques. To investigate
the stability properties numerically, we make use
of the linear eigenmode method, which searches
for the roots of the matrix dispersion relation, as
implemented in the bEASt code.

Next, we briefly outline the derivation of the
matrix dispersion relation for the Harris-like
instability [11,13] in intense particle beams for
electrostatic perturbations about the thermal
equilibrium distribution with temperature aniso-
tropy ðT?b4TkbÞ described in the beam frame

(Vb ¼ 0 and gb ¼ 1) by the self-consistent axisym-
metric Vlasov equilibrium [15,17]

f 0
bðr; pÞ ¼

bnb

ð2pmbÞ
3=2T?bT

1=2
kb

� exp �
H?

T?b
�

p2
z

2mbTkb

� �
. ð17Þ

Here, H? ¼ p2
?=2mb þ ð1=2Þmbo2

f ðx
2 þ y2Þ þ

ebf
0
ðrÞ is the single-particle Hamiltonian for
transverse particle motion, p? ¼ ðp2
x þ p2

yÞ
1=2 is the

transverse particle momentum, r ¼ ðx2 þ y2Þ
1=2 is

the radial distance from the beam axis, and f0
ðrÞ is

the equilibrium space-charge potential determined
self-consistently from Poisson’s equation,

1

r

q
qr

r
qf0

qr
¼ �4pebn0

b (18)

where n0
bðrÞ ¼

R
d3 pf 0

bðr; pÞ is the equilibrium num-
ber density of beam particles. For simplicity, the
analysis is carried out in the beam frame (Vb ¼ 0
and gb ¼ 1). Furthermore, setting f0

ðr ¼ 0Þ ¼ 0;
the constant bnb occurring in Eq. (17) can be
identified with the on-axis density n0

bðr ¼ 0Þ; and
the constants T?b and Tkb can be identified with the
transverse and longitudinal temperatures (energy
units), respectively.

For present purposes, we consider small-ampli-
tude electrostatic perturbations of the form

dfðx; tÞ ¼ cdfðrÞ expðimyþ ikzz � iotÞ (19)

where dfðx; tÞ is the perturbed electrostatic poten-
tial, kz is the axial wavenumber, m is the azimuthal
mode number and o is the complex oscillation
frequency, with Imo40 corresponding to in-
stability (temporal growth). We also assume that
the beam is located inside a perfectly conducting
cylindrical pipe with radius rw: The linearized
Poisson equation can be expressed as

1

r

q
qr

r
q
qr

cdfðrÞ � k2
z
cdfðrÞ � m2

r2
cdfðrÞ

¼ �4peb

Z
d3 pddf bðr; pÞ ð20Þ

with the boundary condition cdfðr ¼ rwÞ ¼ 0: Hereddf bðr; pÞ is the Fourier amplitude of the perturbed
distribution function df bðr; z; p; tÞ; i.e.,

df bðr; z; p; tÞ ¼
ddf bðr; pÞ expðikzz � iotÞ. (21)

The perturbed distribution function df bðr; z; p; tÞ
satisfies the linearized Vlasov equation [17].

q
qt

þ v �
q
qx

� ðebr?f
0
þ mbo2

fx?Þ �
q

qp?

 �
df b

¼ ebrdf �
q
qp

f 0
b. ð22Þ
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In Eq. (20), we express the perturbation amplitude
as cdfðrÞ ¼ P

n anfnðrÞ; where fang are constants,
and the complete set of vacuum eigenfunctions
ffnðrÞg is defined by fnðrÞ ¼ AnJmðlnr=rwÞ: Here,
ln is the nth zero of JmðlnÞ ¼ 0; and An ¼ffiffiffi

2
p

=½rwJmþ1ðlnÞ� is a normalization constant such
that

R rw

0 dr rfnðrÞfn0 ðrÞ ¼ dn;n0 : We substitutecdfðrÞ ¼ P
n anfnðrÞ into Poisson’s equation (20)

and operate with
R rw

0 dr rfn0 ðrÞ � � � . This gives the
matrix dispersion equation [13]X

n

anDn;n0 ðoÞ ¼ 0 (23)

where Dn;n0 ðoÞ is defined by

Dn;n0 ðoÞ ¼
J2

mþ1ðlnÞ

2
ðl2

n þ k2
zr2

wÞdn;n0 þ wn;n0 ðoÞ (24)

and the beam-induced susceptibility wn;n0 ðoÞ is
defined by

wn;n0 ðoÞ ¼ �4pebr2
w

Z rw

0

dr rfn0 ðrÞ

Z
d3pddf n

bðr; pÞ.

(25)

Here, ddf n
bðr; pÞ is defined by Eqs. (21) and (22) withcdf ! fn:

Without presenting algebraic details, using the
method of characteristics [11,13,17], the beam-
induced susceptibility can be expressed as

wn;n0 ðoÞ ¼
r2

w

l2
d

qn;n0 þ

Z 1

0

ds exp iso�
s2k2

zTk

2mb

� �
� ioþ 1 �

Tk

T?

� �
sk2

zT?

2mb

� �
Qn;n0 ðsÞ ð26Þ

where

Qn;n0 ðsÞ ¼
1

mbl
2
d

X
p

Z
dPy

or

dH?

T?b
exp �

H?

T?b

� �
� ðIp;m

n Þ
�I

p;m
n0 e�isðporþmoyÞ. ð27Þ

Here Py is the canonical angular momentum and
l2

d ¼ T?b=4pe2
bbnb is the perpendicular Debye

length-squared. In Eqs. (26) and (27), qn;n0 and
Ip;m

n are defined by

qn;n0 ¼

Z 1

0

dx xNðxÞJmðlnxÞJmðln0xÞ ð28Þ
and

Ip;m
n ðH?;PyÞ

¼

Z T r

0

dt
T r

Jm

lnrðtÞ
rw

� �
e�iportþim½yðtÞ�oyt�. ð29Þ

In the orbit integral in Eq. (29), rðtÞ and yðtÞ are
the transverse orbits in the equilibrium field
configuration such that yð0Þ ¼ 0 and rð0Þ ¼
rminðH?;PyÞ is the minimum radial excursion
of the particle trajectory undergoing periodic
motion with frequency orðH?;PyÞ ¼ 2p=T r; and
oyðH?;PyÞ ¼ yðT rÞ=T r is the average frequency
of angular rotation. In Eq. (28), ð Þ

� denotes
complex conjugate, and NðxÞ ¼ n0

bðxrwÞ=bnb is
the normalized density profile, where n0

bðrÞ ¼R
d3p f 0

bðr; pÞ: The condition for a nontrivial
solution to Eq. (23) is

detfDn;n0 ðoÞg ¼ 0 (30)

which plays the role of a matrix dispersion relation
that determines the complex oscillation frequency o:

The dispersion relations (23) and (30) can be
used to investigate detailed electrostatic stability
properties for beams with temperature anisotropy
ðTkb=T?bo1Þ for a wide range of normalized axial
wavenumbers ðkzrbÞ and normalized tune depres-
sion n̄=n0: For sufficiently large values of kzrb; the
large temperature anisotropy ðTkb=T?b51Þ in
Eqs. (23) and (30) provides the free energy to
drive the classical Harris-type instability [1],
generalized here to include finite transverse geo-
metry and beam space-charge effects.

The bEASt code solves Eq. (23) in several steps.
First, the particle orbits rðtÞ and yðtÞ in the
equilibrium field configuration are calculated for
one complete oscillation period T r and the
frequencies orðH?;PyÞ and oyðH?;PyÞ are ob-
tained. Next, a fast Fourier transform (FFT) is
used to calculate the orbit integrals in Eq. (29). In
the next step, the matrices Qn;n0 ðsÞ [Eq. (27)] and
qn;n0 [Eq. (27)] are calculated, stored, and then used
repeatedly to recalculate the beam-induced sus-
ceptibility [Eq. (26)] and dispersion matrix [Eq.
(24)] during the search for the eigenvector of the
dispersion matrix Dn;n0 ðoÞ [Eq. (23)] with zero
eigenvalue. Note that the matrices Qn;n0 ðsÞ and qn;n0

are calculated only once, thanks to the separation
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of the particle variables ðH?;Py; r; yÞ from the
dispersion equation variables o and kz in Eq. (26).
The typical number of particle trajectories used in
the calculations is 300, with 16 time steps during
one oscillation period T r; which is significantly less
than the number of particles and times steps used
in PIC simulations [11–14]. The method described
here works well for finding the unstable modes, or
slightly damped modes. For highly damped
modes, an accurate integration in Eq. (26) requires
calculation of the matrix Qn;n0 ðsÞ for values of
s4jImoj=ðk2

zT?=mbÞ; which can be computation-
ally extensive.
0

(R
e 

ω
) m

ax
/ ω

f

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(b)

Fig. 1. Plots of the normalized growth rate ðImoÞmax=of and

real frequency ðReoÞmax=of at maximum growth versus

normalized tune depression n̄=n0 for Tkb=T?b ¼ 0 and m ¼ 0

(solid curve) and m ¼ 1 (dotted curve). Thick solid curve

corresponds to Eq. (16).
4. Numerical results

Typical numerical results obtained using the
bEASt code are presented in Figs. 1–4 for the case
where rw ¼ 3rb: Fig. 1 shows the normalized
growth rate ðImoÞmax=of and real frequency
ðReoÞmax=of at maximum growth plotted versus
the normalized tune depression n̄=n0 for Tkb=T?b

¼ 0 and m ¼ 0; 1. For m ¼ 0; there are two distinct
unstable modes. One is the fastest growing mode
for n̄=n040:55; and the other is the fastest growing
mode for n̄=n0o0:55: The approximate expression
[Eq. (16)] for the normalized growth rate
ðImoÞmax=of is also plotted in Fig. 1a (thick solid
curve) for comparison. The m ¼ 1 dipole mode has
the highest growth rate, ðImoÞ=of ’ 0:34; for
n̄=n0 ’ 0:62: The instability is absent for
n̄=n040:82 for the choice of parameters in Fig. 1.
The real frequency ðReoÞ=of of the unstable mode
with azimuthal number m ¼ 1 is zero, and is not
plotted in Fig. 1. Moreover, the real frequency is
plotted only for the most unstable modes.

Fig. 2 shows the normalized growth rate
ðImoÞ=of plotted versus the normalized wave-
number kzrb for the normalized tune depression
n̄=n0 ¼ 0:3 and several values of the temperature
ratio Tkb=T?b ¼ 0:0; 0.01, 0.05. Figs. 2(a) and (b)
correspond to azimuthal mode numbers m ¼ 0
and m ¼ 1; respectively. As expected, the instabil-
ity is present only for short-wavelength perturba-
tions with k2

zr2
b41; and finite Tkb effects introduce

a finite bandwidth in kzrb for instability, since the
modes with large values of kzrb are stabilized by
longitudinal Landau damping. Also, the unstable
dipole mode with m ¼ 1 is purely growing.

The normalized eigenfunctions Re dbfðrÞ and
Im dbfðrÞ corresponding to two values of normal-
ized depressed tune n̄=n0 ¼ 0:3; 0:6 and two values
of azimuthal mode number m ¼ 0; 1 for kzrb ¼ 20
and infinite anisotropy Tkb=T?b ¼ 0 are plotted
versus r=rw in Fig. 3. Note, that for smaller
normalized depressed tune, the eigenfunctions
become localized near the beam edge. An im-
portant characteristic of the instability is the
longitudinal threshold temperature T th

kb for the
onset of instability normalized to the transverse
temperature T?b: Due to accuracy limitations
in the bEASt code, we define the threshold as
the value of Tkb=T?b at which the maximum
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Fig. 2. Plots of the normalized growth rate ðImoÞ=of versus

kzrb for n̄=n0 ¼ 0:3 and several values of the temperature ratio

Tkb=T?b ¼ 0; 0.01, 0.05 (curves a,b and c). Here, figures (a) and

(b) are for azimuthal mode number m ¼ 0 and m ¼ 1;
respectively.
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Fig. 3. Plots of the normalized eigenfunctions Re½dbfðrÞ� and

Im½dbfðrÞ� for the most unstable modes versus r=rw correspond-

ing to m ¼ 0 (solid curves) and m ¼ 1 (dotted curve) and two

values of normalized depressed tune, n̄=n0 ¼ 0:6 (a) and n̄=n0 ¼

0:3 (b). Here, Tkb=T?b ¼ 0 and kzrb ¼ 20: Thick solid curve

corresponds to normalized density profile nðrÞ=nð0Þ:
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normalized growth rate becomes less than
ðImoÞmax=ofo0:01: This quantity is plotted in
Fig. 4 versus the normalized tune depression n̄=n0

for two values of azimuthal number corresponding
to m ¼ 0; 1: Note from Fig. 4 that the maximum
threshold value, Tkb=T?b ¼ 0:11; is achieved for
moderately intense beams with n̄=n0 ¼ 0:4:
0.2 0.4 0.6 0.8 1
0

0.02

0

Fig. 4. Longitudinal threshold temperature T th
kb for the onset of

instability normalized to the transverse temperature T?b is

plotted versus normalized tune depression n̄=n0 for two values

of the azimuthal mode number, m ¼ 0 (solid line) and m ¼ 1

(dotted line).
5. Conclusions

The bEASt code, which solves the matrix
dispersion relation Eq. (23) for electrostatic
perturbations in intense particle beams, has been
used to investigate the stability properties of
intense charged particle beams with large tem-
perature anisotropy ðTkb=T?b51Þ over a wide
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range of normalized tune depression,
0:2on̄=n0o1: The numerical results clearly show
that intense beams with n̄=n0o0:82 are linearly
unstable to short-wavelength perturbations with
k2

zr2
bX1: The instability is kinetic and is due to the

coupling of the particles transverse betatron
motion with the longitudinal plasma oscillations
excited by the perturbation. The normalized
instability growth rate is a maximum for moder-
ately intense beams with n̄=n0 � 0:62 and is
proportional to the normalized tune, i.e.,
Imo=of � n̄=n0 for n̄=n051: The most unstable
mode is found to be a purely growing dipole mode
with normalized growth rate Imo=of ’ 0:34 for
n̄=n0 ’ 0:62 and Tkb=T?b ¼ 0: The instability is
stabilized by longitudinal Landau damping when-
ever the ratio of the longitudinal and transverse
temperatures satisfies Tkb=T?b40:11:
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