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Abstract

A Vlasov–Maxwell equilibrium for a charged particle bunch is given in the beam frame by the distribution function

that is a function of the single-particle Hamiltonian f ¼ f ðHÞ; where in an axisymmetric cylinder H ¼ p2=2m þ

k?r2=2þ kzz2=2þ qfðr; zÞ; the kinetic energy is p2=2m; k? and kz are the external focusing coefficients in the transverse

and longitudinal directions, and f is the electrostatic potential determined self-consistently from Poisson’s equation

r2f ¼ �4pq
R
d3pf ðHÞ: The self-field potential f introduces a coupling between the otherwise independent r and z

motions. Under quite general conditions, this leads to chaotic particle motion. Poisson’s equation is solved using a

spectral method in z and a finite-difference method in r, and a Picard iteration method is used to determine f self-

consistently. For the thermal equilibrium distribution f ¼ A expð�H=TÞ; the single-particle trajectories display chaotic
behavior. The properties of the chaotic trajectories are characterized.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

It has been noted that charged particle beams in
thermal equilibrium will possess particles that
follow chaotic trajectories and the existence of
chaotic particles may lead to a degradation of the
beam quality [1]. It is thus important to study and
understand the conditions that lead to chaotic
e front matter r 2005 Elsevier B.V. All rights reserve
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behavior. This article examines such trajectories in
finite-length charge bunches. The commonly used
Lyapunov exponent [2,3] quantifies how sensitive a
trajectory is to initial conditions, a defining
characteristic of chaos. Particular attention is
given to resonant motion and the stability of
periodic trajectories is examined. Periodic trajec-
tories play an important role, as chaotic trajec-
tories arise near unstable periodic orbits.
We have not yet formulated a comprehensive

description of the extent of chaos in phase space as
d.
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a function of the system parameters, although
some general observations are interspersed
throughout the text. The numerical approach that
is presented here may enable an efficient and
insightful description of the onset and extent of
chaotic particle motion in charge bunches with
self-consistent electric potential.
2. Thermal equilibrium

We begin with the Hamiltonian for a single
particle, of charge q, confined by an external
focusing potential of the form V ext ¼ k?r2=2þ
kzz2=2; where k? and kz are the external focusing
coefficients in the transverse, r, and longitudinal, z,
directions. A charged particle will also feel the
effect of the electrostatic potential, fðr; zÞ;
generated by the charge bunch itself. The full
Hamiltonian for a single particle in the beam
frame is then

H ¼
p2r
2m

þ
p2y

2mr2
þ

p2z
2m

þ
k?r2

2
þ

kzz2

2
þ qf (1)

where pr; py and pz are the momenta canonical to
r; y and z, respectively, and are given by pr ¼ m_r;
py ¼ mr2 _y and pz ¼ m_z; where the ‘dot’ denotes
the time derivative.
To describe the charge bunch it is convenient to

specify an equilibrium distribution function,
f ðx; pÞ; where x and p are the position and
momentum coordinates in phase space. The
number density nðxÞ of particles is given by n ¼R

f d3p: Any distribution function that is a
function solely of the single particle Hamiltonian
represents a Vlasov–Maxwell equilibrium [4]. A
particularly appropriate form of the distribution
function, which we choose for illustration, is that
which describes a charge bunch in thermal
equilibrium

f ðHÞ ¼
n0

ð2pmTÞ
3=2

expð�H=TÞ. (2)

By expressing the self-generated electric field
E ¼ �rf; and absorbing Eqs. (1) and (2) into
Poisson’s equation, r � E ¼ 4pqn; we obtain

r2f ¼ �4pqn (3)
with number density n ¼ n0 expðk?r2=2þ kzz2=2þ
qfÞ: In general, fmust be determined numerically.
By introducing the normalized lengths r̄ ¼ r=rb
and z̄ ¼ z=rb; where rb is defined rb ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
T=k?

p
; the

normalized potential, f̄ ¼ qf=T ; satisfies

r
2
f̄ ¼ �2sb expð�r̄2=2� Zz̄2=2� f̄Þ (4)

where the physical system is now described by two
dimensionless parameters Z and sb; these being the
frequency ratio between the longitudinal and
perpendicular motions, Z ¼ kz=k?; and the ratio
of plasma frequency to the perpendicular
oscillation frequency, sb ¼ ð4pq2n0=mÞ=2o2

? where
o2

? ¼ k?=m: The normalized Hamiltonian, H̄ ¼

H=T ; is

H̄ ¼
p̄2r
2
þ

p̄2y
2r̄2

þ
p̄2z
2
þ

r̄2

2
þ Z

z̄2

2
þ f̄ (5)

where p̄r ¼ r̄0; p̄y ¼ r̄2y0; p̄z ¼ z̄0; and prime denotes
derivative with respect to the normalized time, t̄ ¼

to?: Hereafter, we will use the normalized
equations: the ‘bars’ will be dropped and the
‘dot’ will denote the derivative with respect to the
normalized time.
A self-consistent solution to Eq. (3) is con-

structed numerically. A finite difference method is
used in the transverse direction and the even
symmetry in the z coordinate allows an even
spectral representation for the longitudinal direc-
tion fðr; zÞ ¼

P
fnðrÞ cosðnkzÞ; where fnðrÞ inter-

polates fn;i given on the radial grid. In the results
below, 100 radial zones are used between the axis,
r ¼ 0; and the radial wall, r ¼ Rw; with normalized
Rw ¼ 20: The periodicity length, Lz; is chosen to
ensure the self-field potential at this point is
negligible with normalized Lz ¼ 20; and 50 Four-
ier harmonics are used. In cylindrical coordinates,
the Laplacian operator takes the form r2 ¼ q2r þ
r�1qr þ q2z : The radial derivatives are approxi-
mated by the first-order expressions, with the
boundary conditions qrjð0; zÞ ¼ 0 and jðRw; zÞ ¼
const: The structure of the r2 operator becomes a
tri-diagonal matrix for each harmonic, which is
easily inverted. This allows a Picard iterative
solution for the potential: given the spectral
representation of the number density, the potential
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f is solved; the number density is then determined
given the potential. The iterations are terminated
when f is no longer changing.
For each selection of the dimensionless para-

meters ðZ; sbÞ; a point in phase space is described by
ðr; y; z; pr; py; pzÞ: The azimuthal angle y is ignorable,
thus the angular momentum py is a constant of the
motion. Each particle’s trajectory will lie on a
constant energy surface. A phase space subset is
then specified by ðpy;HÞ; and a point in this space is
given by ðr; z; prÞ: Note that given ðpy;HÞ and
ðr; z; prÞ; pz is then constrained by Eq. (5). To
visualize the structure of phase space, a Poincar-
é section, z ¼ 0 with pz40; is chosen. From a given
starting point ðr; prÞ on this plane, we integrate the
equations of motion and plot successive intersec-
tions with the Poincaré section. In this manner, we
determine if the motion is regular or chaotic. If, in
addition to py and H, there exists an invariant of the
motion, successive intersections will lie on a curve
and the motion is deemed regular. Conversely, if
successive intersections tend to fill an area, we may
conclude that no additional invariant exists and the
motion is stochastic.
Regular and chaotic trajectories are interspersed

in phase space. Regular motion lies on invariant
surfaces where the frequency ratio is irrational.
Resonance zones, or islands, will emerge where the
frequency ratio between the r and z motions is
rational. Associated with each island chain, are the
stable and unstable orbits, which appear as O and
X points on the Poincaré plot. Chaotic trajectories
arise near the unstable X point. If the islands are
so large that they overlap with nearby islands, then
regions of extended chaos will be produced.
3. Low-intensity beams

For the case that the self-field potential
is zero, the r and z motions are independent
and the dynamics is integrable. The ‘action’
coordinates are determined by j ¼

H
pdq=2p [5],

which gives

jr ¼ ða� pyÞ=2, ð6Þ

jz ¼ ðz2Z1=2 þ p2z=Z
1=2Þ=2 ð7Þ
where a ¼ p2r=2þ p2y=2r2 þ r2=2; with correspond-
ing ‘angle’ coordinates

yr ¼ cos�1½ðr2 � aÞ=b� ð8Þ

yz ¼ tan�1ðZ1=2z=pzÞ ð9Þ

where b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � p2y

q
: For this case, the use of these

coordinates reduces the motion to trivial trajec-
tories as the Hamiltonian takes the form H ¼

2jr þ py þ Z1=2jz: The frequency ratio between the
transverse and longitudinal oscillations for this
case is or=oz ¼ 2=Z1=2; and a resonance will exist
when 2=Z1=2 ¼ p=q; where p; q are integers. The
existence of resonances plays a crucial role in the
formation of chaotic trajectories.
For the general case, with non-zero electrostatic

potential f; the Hamiltonian takes the form

H ¼ 2jr þ py þ Z1=2jz þ j (10)

where jðyr; yz; jr; jzÞ ¼ fðrðyr; jrÞ; zðyz; jzÞÞ: When j
is small, perturbative methods may be employed
[6]. Writing H ¼ h0 þ �h1; where h0 ¼ 2jr þ py þ

Z1=2jz and h1 ¼ j; action-angle coordinates
(equivalently, invariants of the motion) for the
perturbed motion through second order in � have
been constructed and compared to the exact
trajectories, as determined by integration of
Eqs. (11)–(13) below, as shown in Fig. 1. For
sufficiently small self-field potential, the agreement
is generally good.
For small perturbations from integrability, the

KAM [7–9] theorem (see also Refs. [3,10]) allows
expectation that the majority of surfaces will remain
intact. In particular, surfaces with sufficiently irra-
tional frequency ratio will survive sufficiently small
perturbations. In this case, the perturbative con-
struction of invariants is likely to be fruitful.
However, the frequency ratio is modified by

increasing self-field potential, and resonances be-
tween the r and z motion will be encountered.
As the strength of self-field intensity increases,
chaotic regions associated with the unstable peri-
odic trajectories will increase and devour regions
of regular trajectories. Perturbation theory will
fail in this case, because the invariants no
longer exist.
The remainder of this article will illustrate the

structure of the phase space and present some
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Fig. 2. Poincaré plot for system with ðZ; sbÞ ¼ ð0:385; 1:17Þ in
the phase space subset ðpy;HÞ ¼ ð1:0; 1:0Þ:Fig. 1. Comparison of trajectories on Poincaré section with

invariant surfaces constructed from second-order perturbation

theory for system parameters ðZ; sbÞ ¼ ð0:3; 0:1Þ in the phase

space subset ðpy;HÞ ¼ ð1:0;H ¼ 5:0Þ:
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theoretical and numerical tools which may be
employed to study the chaotic trajectories in high-
intensity charge bunches.
4. High-intensity beams

For large values of sb; we resort to direct
numerical integration of the differential equations
of motion to determine the single-particle
trajectories. With the selection of the plane z ¼ 0
as the Poincaré section, it is convenient to consider
the independent integration parameter to be yz;
rather than the time. The equations to be
integrated then become

y0r ¼ _yr=_yz ð11Þ

j0r ¼ dtjr=_yz ð12Þ

j0z ¼ dtjz=_yz ð13Þ

where the 0 denotes the derivative with respect to
yz; _yr ¼ 2þ qj=qjr;

_yz ¼ Z1=2 þ qj=qjz; dtjr ¼

�qj=qyr; and dtjz ¼ �qj=qyz: The mapping from
the Poincaré section to itself, the Poincaré map, is
now obtained by integrating these equations from
yz ¼ 0 to yz ¼ 2p: Shown in Fig. 2 is a Poincar-
é plot showing the emergence of an island chain
and a small region of chaos for the system
parameters ðZ; sbÞ ¼ ð0:385; 1:17Þ and the phase
space subset ðpy;HÞ ¼ ð1:0; 1:0Þ: Typically, we find
that the region of chaotic trajectories is greater as
H increases, but we have taken the opportunity
here to demonstrate that chaotic trajectories can
exist at H ¼ 1:
A defining feature of chaos is that particle

trajectories have an extreme sensitivity to the
initial conditions. To quantify this sensitivity,
consider a particle trajectory with initial condi-
tions xð0Þ ¼ ðyrð0Þ; jrð0Þ; jzð0ÞÞ (where, given H, jz is
constrained) and a nearby trajectory xð0Þ þ dxð0Þ;
where djz is constrained to lie in the constant-
energy tangent space

djz ¼ �ðqyr
jdyr þ ð2þ qjr

jÞdjrÞ=ðZ
1=2 þ qjz

jÞ.

(14)

The trajectories will evolve under Eqs. (11)–(13),
and the rate at which the separation dxðyzÞ

evolves is characterized by the Lyapunov



ARTICLE IN PRESS

Fig. 3. Lyapunov exponents for chaotic trajectories for a

system with parameters ðZ; sbÞ ¼ ð0:15; 1:05Þ; ðpy;HÞ ¼ ð1:0; 4:0Þ:
The trajectories are initialized near the ð4; 1Þ and ð6; 1Þ periodic
orbits.

S.R. Hudson et al. / Nuclear Instruments and Methods in Physics Research A 544 (2005) 458–464462
exponent s

sðx; dxÞ ¼ lim
jdxð0Þj!0

lim
yz!1

1

yz

ln
jdxðyzÞj

jdxð0Þj
. (15)

The limit jdxð0Þj ! 0 is most conveniently
treated by linearizing Eqs. (11)–(13) to obtain
ddx=dyz ¼ Tdx; where T is the tangent map given
by

T ¼

qy0r
qyr

;
qy0r
qjr

;
qy0r
qjz

qj0r
qyr

;
qj0r
qjr

;
qj0r
qjz

qj0z
qyr

;
qj0z
qjr

;
qj0z
qjz

0
BBBBBBBB@

1
CCCCCCCCA
. (16)

Formally, s depends on the initial dx; but as the
component of dx along the most unstable
direction will grow most rapidly, this component
will dominate the computation. In practice,
for an arbitrary initial dx; the largest Lyapunov
exponent will be calculated. After linearizing
the equations, all that remains is to follow the
trajectory, while evolving the tangent vector,
to determine the quantity ln jdxj=yz as yz ! 1

where jdxð0Þj ¼ 1: Typically, a trajectory must be
followed hundreds of oscillations for this limit to
converge.
For the case of periodic orbits, a tremendous

reduction in the computation of the Lyapunov
exponent is enabled. A periodic orbit, of type
ðp; qÞ; satisfies yrð2pqÞ ¼ yrð0Þ þ 2pp and jrð2pqÞ ¼

jrð0Þ: The full period tangent map, M, at the
periodic orbit is obtained by integrating

dM

dyz

¼ TM (17)

one full-period distance 2pq with initial condition
M ¼ I ; where I is the 3� 3 identity matrix. By
incorporating the energy conserving constraint Eq.
(14), the full period tangent map reduces to a 2� 2
matrix.
Important information is contained in this

matrix. If the eigenvalues of this matrix are real,
the periodic orbit is unstable and the Lyapunov
exponent spq for the periodic orbit is

spq ¼ ln l=2pq (18)
where l is the eigenvalue. The exponent spq may be
determined exactly by integrating over the much
shorter distance of 2pq: Note that periodic orbits,
even unstable periodic orbits, are quite simple to
find. As a result of the underlying symmetry of the
system, which results in the up–down symmetry of
the Poincaré plots, periodic orbits are guaranteed
to lie on the symmetry lines yz ¼ 0;p: The search
for periodic orbits becomes a one-dimensional
search in jr along this line.
The Lyapunov exponents for chaotic trajec-

tories arising at the unstable periodic orbits, as
calculated from Eq. (15) and shown in color, are
compared to the value obtained from Eq. (18),
shown as the dotted lines, in Fig. 3. Initially, the
Lyapunov exponents from these two methods
agree perfectly. To obtain perfect agreement it is
necessary to initialize Eq. (15) with a tangent
vector that lies in the unstable direction,
which is provided by the maximum eigenvalue’s
corresponding eigenvector. After sufficiently many
iterations of the Poincaré map (exactly how many
is determined by the accuracy of the integration),
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Fig. 4. Poincaré plot for a system with parameters consistent

with Fig. 3. The chaotic trajectories are colored as in Fig. 3.
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numerical errors accumulate and the trajectory
deviates from the true periodic orbit. After this
point, the Lyapunov exponent deviates and
eventually will converge to a slightly lower value.
For reference, the calculation of Eq. (15) for a
linearly diverging tangent vector is shown as the
decreasing black line. The corresponding Poincar-
é plot for this case is shown in Fig. 4.
5. Conclusion

Analytical and numerical studies have been
presented which enable an efficient characteriza-
tion of particle trajectories in finite-length charge
bunches. In particular a method to quickly
determine the Lyapunov exponent of the unstable
periodic orbit has been presented. For illustration,
a charge bunch in thermal equilibrium has been
considered and shown to display chaotic trajec-
tories.
The eigenvalues of the full-period tangent map

are related to a quantity called the residue
introduced by Greene [11]. The limiting residue
of an appropriate sequence of periodic orbits may
be used to determine the existence, or non-
existence, of an irrational (KAM) surface. Also,
the tangent map at the periodic orbits can also be
used to estimate island widths [12]. This suggests
that a numerically efficient method to quantify the
degree of chaos would be to locate several periodic
orbits (usually those with the lowest values of q are
most important, and conveniently these are of the
shortest length), estimate the widths of the islands
associated with these periodic orbits and apply a
Chirikov style island overlap criterion [13]. Final-
ly, note that the parabolic potential of the applied
focusing potential is an approximation. Additional
resonances may also exist due to the periodic
nature of an applied quadrupole focusing field.
Finally, to assure radial and axial confinement

of the charge bunch, the normalized intensity
parameter sb ¼ o2

p=2o
2
? is restricted to values

satisfying sbo1þ Z=2; where Z ¼ o2
z=o

2
? [4]. Here,

sb51 corresponds to a low-intensity charge bunch,
whereas sb ! 1þ Z=2 corresponds to a low-
emittance, space-charge-dominated charge bunch.
While we have not yet completed a thorough
classification of the chaotic regions of phase space
in terms of beam intensity, it should be noted that
the system parameters in Fig. 1. correspond to a
low-intensity beam, whereas the system para-
meters in Figs. 2–4 correspond to moderate-to-
high beam intensities. Evidently, from the results
presented here, the existence of chaotic particle
trajectories in a finite-length charge bunch is quite
ubiquitous.
Acknowledgements

We thank Ed Startsev for assistance with Eq. (6)
and Igor Kaganovich and Neil Pomphrey for
useful discussions. This work was supported by the
US Department of Energy.
References

[1] C.L. Bohn, I.V. Sideris, Phys. Rev. AT Accel. Beams 6

(2003) 034203.

[2] G. Benettin, L. Galgani, J.-M. Strelcyn, Phys. Rev. A 14

(1976) 2338.

[3] A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic

Dynamics, second ed., Springer, New York, 1992.



ARTICLE IN PRESS

S.R. Hudson et al. / Nuclear Instruments and Methods in Physics Research A 544 (2005) 458–464464
[4] R.C. Davidson, H. Qin, Physics of Intense Charged

particle beams in high energy accelerators, World Scien-

tific, Singapore, 2001.

[5] H. Goldstein, Classical Mechanics, second ed., Addison-

Wesley, MA, 1980.

[6] J.R. Cary, Phys. Rep. 79 (1981) 129.

[7] A.N. Kolmogorov, Dokl. Akad. Nauk. SSR 98 (1954) 469.

[8] V.I. Arnold, Russ. Math. Surv. 18 (1963) 9.
[9] J. Moser, Nachr. Akad. Wiss. Göttingen, Math. Phys. K 1

(1962) 1.

[10] D.K. Arrowsmith, C.M. Place, An introduction to

Dynamical Systems, Cambridge University Press, Cam-

bridge, UK, 1991.

[11] J.M. Greene, J. Math. Phys. 20 (1979) 1183.

[12] J.R. Cary, J.D. Hanson, Phys. Fluids B 3 (1991) 1006.

[13] B. Chirikov, Phys. Rep. 52 (1979) 263.


	Chaotic particle trajectories in high-intensity finite-length charge bunches
	Introduction
	Thermal equilibrium
	Low-intensity beams
	High-intensity beams
	Conclusion
	Acknowledgements
	References


