Plasma Sources for Drivers and NDCX-II

19th International Symposium on Heavy Ion Inertial Fusion

August 12 – August 17, 2012

Berkeley, CA

Erik P. Gilson Princeton Plasma Physics Laboratory

N is for Neutralization

NDCX-II Layout

NDCX-II Plasma Source Requirements

 Local plasma density should exceed the local beam density throughout the drift region – including inside both the final focus solenoid and the target chamber.

 $n_b \sim mid \ 10^9 \ cm^{-3}$ at beginning of neutralized drift section. $n_b \sim mid \ 10^{10} \ cm^{-3} \sim 30 \ cm$ before target spot. $n_b \sim 10^{13} \ cm^{-3}$ at target spot.

- Plasma sources should not employ electric or magnetic fields that would disturb the beam propagation.
- Plasma sources should not introduce so many neutrals as to interfere with the beam propagation by stripping or charge exchange.

The NDCX-I Final Focus Solenoid and Target Chamber

Final Focus Solenoid and Target Chamber – **Cathodic Arc Plasma Source (CAPS)**

Developed by André Anders and collaborators. P. K. Roy et al., Nucl. Instr. and Meth. in Phys. Res. A 606 22, (2009).

The four CAPS produce a plasma density of 10¹² cm⁻³ on the beam axis near the target spot and a plasma density of 10¹³ cm⁻³ on the beam axis at the midplane of the 8 T Final Focusing Solenoid (FFS).

A 3 kV pulse drives 800 A peak current through each of the four sources.

Drift Compression Region Upstream of Final Focusing Solenoid – High Dielectric Ferroelectric Ceramics

Drift Compression Region Upstream of Final Focusing Solenoid – High Dielectric Ferroelectric Ceramics

A high-dielectric ($\epsilon/\epsilon_0 \sim 1000$) ceramic produces a large polarization surface charge density when a high voltage is applied. The resulting large electric field creates a plasma on the mesh-lined surface.

- Ceramics such as Lead Zirconium Titanate (PZT) and Barium Titanate (BaTiO₃) have relative dielectric coefficients of several thousand.
- Commonly used in transducers and high-power capacitors.

- Explosive plasma formation in triple points
- Avalanche of electrons along the insulator-vacuum interface
- Secondary electron and ion emission
- Gas desorption and ceramic ablation
- Ionization of the neutral cloud

Identified and studied by Krasik, Felsteiner, Haber and Kaganovich.

Strong Tangential Electric Fields Drive Plasma Flow Along the Dielectric Ceramic Surface

A high-dielectric ($\varepsilon/\varepsilon_0 \sim 1000$) ceramic produces a large polarization surface charge density when a high voltage is applied. The resulting large electric field creates a plasma on surface.

Ya. E. Krasik 20 r

20 ns exposure

Example: Planar High Dielectric Ferroelectric Ceramic Plasma Source

Barium Titanate Plasma Sources for NDCX-II are Made in a Cylindrical Shape to Fill the Beamline

Grounded interior mesh

3.000" ID 3.300" OD 1.600" length

> Metalized outer surface. High voltage is applied here.

Assembled Ferroelectric Plasma Sources are Placed Together on a Support Cradle

Collimated Faraday Cup Measurements Show On-Axis Densities of 2 x 10¹¹ cm⁻³ With Crowbar

Microwave Cutoff Measurements Show Large Plasma Density When Crowbar is Used

No cutoff with 70 GHz observed

Fast Voltage Waveform Risetime Increases Plasma Formation Rates – Self-Inductance of Cables Is Acceptable for NDCX-II

2 m coaxial cable

6 m coaxial cable

The Plasma Source Provides Plasma from the Exit of the Last Cell to the Entrance of the Final Focus Solenoid

The plasma source is divided into an upstream section and a downstream section separated by a gate valve. The gate valve allows the beamline vacuum to be maintained during target chamber access.

Target Chamber Configurations

The Ferroelectric Plasma Source Will Soon Be Installed on NDCX-II

Slide 18

Each Module is Driven by an Independent Pulser to Allow Precise Timing and the Plasma Density to be Varied

Slide 19

Driver Requirements

Present Cathodic Arc and Ferroelectric plasma source:

Repetition rate:0.5 HzFerroelectric source lifetime:50,000 shotsCathodic Arc source lifetime:50,000 shots

The Ferroelectric Plasma Source Is Scalable

Improved Design with Solid Outer Threaded Jacket and Spiral Wound Inner Electrode

Replacing the perforated steel sheet inserts with a continuous copper "spring" increases the open spaces where ceramic is exposed to mm-size regions.

The outwards force of the expanding copper "spring" ensures that it makes good contact with the inner surface of each ceramic ring, despite possible small misalignments.

A threaded outer jacket holds the assembly together axially instead of wires running axially along the perforated steel sheets.

Flashboard Plasma Source is Being Tested

16kV, 4kA Plasma density in the mid 10¹² cm⁻³ range

NDCX

II

Excimer Lasers at PPPL and LBNL Will be Used in Laser-Based Plasma Source Development

- 10 Hz
- XeCl, 308 nm, 4.0 eV 200 mJ, 20 ns $n_c = 1.2 \times 10^{22} \text{ cm}^{-3}$
- ArF, 193 nm, 6.4 eV $n_c = 3.0 \times 10^{22} \text{ cm}^{-3}$
- With 1 mm spot size, I ~ 1 GW/cm² F ~ 10 J/cm²

Laser-ionization of vapor Laser-ablation of solid target

Summary

- Ferroelectric (FEPS) and Cathodic arc (CAPS) plasma sources work well on NDCX-I and will be used on NDCX-II, with modifications, to ensure that the local plasma density exceeds the local beam density in the neutralized drift region.
- Development of high density plasma sources will continue in order to meet the demands of NDCX-II and future HEDLP and IFE projects.

The End

