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The electrostatic two-stream instability for a cold, longitudinally-compressing intense ion beam
propagating through a background plasma has been investigated both analytically and numerically.
The linear development of the instability and its saturation are examined from the point of view
of wave dynamics, where the plasma waves are represented as quasi-particles characterized by their
position x(t), wavenumber k(t) and energy (or frequency) ω(t). It is found that the longitudinal
beam compression strongly modifies the space-time development of the instability. In particular, the
dynamic compression leads to a significant reduction in the growth rate of the two-stream instability
compared to the case without an initial velocity tilt.
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1. Introduction

To achieve the high focal spot intensities necessary for
high energy density physics and heavy ion fusion appli-
cations, the ion beam pulse must be compressed longi-
tudinally by factors of one hundred or more before it is
focused onto the target. The longitudinal compression
is achieved by imposing an initial velocity profile tilt on
the drifting beam in vacuum [1–3, 6]. To achieve max-
imum longitudinal compression, the space charge of the
beam is neutralized by propagation of the beam pulse
through a dense neutralizing background plasma [2–7]. If
the space charge is fully neutralized by the plasma, the fi-
nal compression is limited only by the initial longitudinal
temperature of the beam ions and possible collective pro-
cesses (such as the two-stream instability [2, 8–11]) which
may prevent full neutralization of the beam space charge.
The beam’s longitudinal thermal spread which can sta-
bilize the instability also inhibits full longitudinal com-
pression. In a recent paper, we made use of macroscopic
fluid model [2, 12] to investigate both analytically and
numerically the electrostatic two-stream instability for a
cold, longitudinally-compressing charged particle beam
propagating through a background plasma. It was found
that the longitudinal beam compression strongly modifies
the space-time development of the two-stream instability.
In particular, it is found that the dynamic compression
leads to a significant reduction in the growth rate of the
two-stream instability compared to the case without an
initial velocity tilt.

The analysis presented here employs a geometrical op-
tics approach to the wave dynamics. This type of analysis
has been used to study the effects of possible density gra-
dients on the two stream-instability [13]. In the case con-
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sidered here, the instability growth is limited by the ve-
locity tilt. Indeed, for small beam density, the instability
between beam ions and the background plasma electrons
requires that the resonance condition ω ! kVb ! ωpe be
satisfied for continuous growth. Here, ωpe is the elec-
tron plasma frequency associated with the plasma elec-
trons, k is the axial wavenumber of the perturbation ,
and Vb is the beam velocity. As shown in Sec. 4, the per-
turbation frequency changes with time due to the time-
dependent beam velocity and beam density profile, and
the mode eventually detunes out of resonance and the
instability ceases. The present analysis takes into ac-
count the effects of the velocity tilt and allows the level of
saturation to be determined. Numerical simulations us-
ing the particle-in-cell code LSP have recently appeared
in the literature that address the practical requirements
for neutralized propagation of heavy ion beams for cases
with and without longitudinal compression [4–6]. Some
preliminary numerical simulations of the possible effects
of longitudinal compression on the two-stream instabil-
ity for longitudinally-compressing heavy-ion beams have
also been reported [6]. This paper is organized as fol-
lows. In Sec. 2, we consider the unperturbed propaga-
tion of the ion beam in the background plasma. In Sec. 3
we describe the quasi-particles model which is used to
analyze the instability, where the plasma waves are rep-
resented as quasi-particles characterized by their position
x(t), wavenumber k(t) and energy (or frequency) ω(t). In
Sec. 4, we apply this model to analyze the two-stream in-
stability between the beam ions and background plasma
electrons, and in Sec. 5 we use the quasi-particle model
to analyze the two-stream instability between the neu-
tralizing plasma electrons and the plasma ions. Finally,
the results are summarized in Sec. 6.

2. Unperturbed propagation

It is assumed that a semi-infinite ion beam with a
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FIG. 1: Plot of the ion beam phase space at different times
during the compression. Line 1 corresponds to t = 0.

sharp leading edge enters the region containing back-
ground plasma at time t = 0 and x = 0 with velocity
V 0

b and density n0
b . The beam is uniformly compressing

in the longitudinal direction as it propagates inside the
chamber and reaches the maximum compression at time
t = Tf at the point x = Xf = TfV 0

b away from the
beam entry point x = 0 into the chamber. The unper-
turbed beam propagation is illustrated in Fig. 1, where
the beam phase space is plotted at different times during
the compression. The transition from the solid to dashed
lines in Fig. 1 identifies the end of the real beam pulse
with finite initial length L0

b . The frequently used parame-
ter, the longitudinal ”velocity tilt” ∆V 0

b /V 0
b , is related to

the compression distance Xf and the initial beam pulse
length L0

b by

∆V 0
b /V 0

b = L0
b/Xf . (1)

It is also assumed that the ion beam propagation in the
background plasma is both charge neutralized and cur-
rent neutralized, where the quasi-neutrality conditions
are given by

n̄e = Zbn̄b + n0, (2)
n̄eV̄e = Zbn̄bV̄b. (3)

Here, n̄j and V̄j denote the dynamically changing unper-
turbed density and flow velocity of the beam ions (j=b)
and background plasma electrons (j=e), and n0 = const.
(independent of x and t) is the uniform density of the
background plasma ions (assumed singly-ionized). In
Eqs. (2) and (3), Zb is the charge state of the beam ions.
The quasi-neutrality condition is slightly violated due to
the finite electron mass in the force balance equation for
the plasma electrons [2]

eĒ = −me

(
∂V̄e

∂t
+ V̄e

∂V̄e

∂x

)
. (4)

The zero-order solution for the beam density and velocity

are given by [2]

n̄b(t) =
n0

bTf

Tf − t
, (5)

V̄b(t, x) =
V 0

b Tf − x

Tf − t
. (6)

Substituting Eqs. (2), (3) and (6) into Eq. (4), we obtain
for the unneutralized electric field

eĒ = −2me
Zbn0

b

n0

(Xf − x)
[(1 − t/Tf ) + (Zbn0

b/n0)]2Tf (Tf − t)
.(7)

Using Poisson’s equation ∂Ē/∂x = 4πeδn̄ = 4πe(Zbδn̄b−
δn̄e), we obtain for the unneutralized charge density

δn̄(x, t)
Zbn̄b(t)

=
2

ω2
peT

2
f

1
[(

1 − t
Tf

)
+ Zbn0

b
n0

]2 , (8)

where ω2
pe ≡ 4πn0e2/me is the plasma frequency-squared

of the background plasma electrons. In what follows we
make use of the parameter

ε ≡ 1/(ωpeTf ) $ 1. (9)

It will be shown that the resonant two-stream insta-
bility develops and saturates everywhere in the back-
ground plasma region except close to the compression
point x = Xf during the time interval when 1−t/Tf ∼ 1.
It follows from Eq. (8) that δn̄(x, t)/Zbn̄b(t) ! 2ε2 during
this time interval, and therefore for perturbations with
amplitude |δñ(x, t)|/Zbn̄b(t) & ε2, the beam can be con-
sidered as fully neutralized by the background plasma.

In what follows, we consider the case of a semi-
infinite beam (see Fig. 1). For a beam with finite initial
length L0

b , the trailing beam end will trace the trajectory
xend(t) = V 0

b t(1+L0
b/Xf )−L0

b . In this case, the present
analysis is applicable everywhere between the leading
and trailing edges of the beam, max{0, xend(t)} ≤ x ≤
xhead(t) = V 0

b t, where the beam can drive the back-
ground plasma unstable. Behind the beam, for 0 ≤ x <
xend(t), the plasma will be left with remnant collective
oscillations with constant amplitude, which are excited
by the propagating beam.

The full neutralization assumptions in Eqs. (2) and
(3) are also violated at the beam head, where the time-
changing magnetic field induces a longitudinal electric
field which acts on the plasma electrons to cause a flow
of return current opposite to the injected current. The
distance from the beam head, where the current and
charge neutrality conditions are violated, depends on the
smoothness of the beam head density profile [7]. Gen-
erally, if the density profile of the beam increases from
zero to it’s maximum value over a distance larger than
Vb0/ωpe, then the the beam charge is fully neutralized.
In addition, the beam current will be neutralized if the
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beam diameter is much larger than the collisionless skin-
depth c/ωpe.

In what follows, we considered the case of a low-density
ion beam propagating through a background plasma with
δ̄ ≡ Zbn0

b/n0 $ 1 . In this case, one can identify two
separate stages (the fast and the slow stages) of the two-
stream instability. During the fast stage, the instability is
between the neutralizing plasma electrons, flowing with
the velocity ∼ (nb/ne)Vb, and the background plasma
ions. During this initial stage, the beam ions are rela-
tively unaffected. We consider this stage of the insta-
bility in Sec. 5. At later times, a two-stream instability
between the beam ions and the neutralizing background
electrons may develop. This later stage of instability,
which directly affects the beam particles, is analyzed in
Sec. 4.

3. Space-time dynamical description of the in-
stability

In what follows we examine the development of the
instability and its saturation from the point of view of
wave dynamics [2] where the plasma waves are repre-
sented as quasi-particles characterized by their position
x(t), wave-number k(t) and energy (or frequency) ω(t).
The quasi-particle dynamics are described by the equa-
tions of motion

dx

dt
=
∂ω

∂k
= − ∂D/∂k

∂D/∂w
, (10)

dk

dt
= −∂ω

∂x
=
∂D/∂x

∂D/∂w
, (11)

dω

dt
=
∂ω

∂t
= − ∂D/∂t

∂D/∂w
, (12)

and the quasi-particle dynamics takes place on the sur-
face D = 0. Here D is the linear dispersion function.

4. Instability between the beam ions and
plasma electrons

In this section we consider the instability between the
beam ions and the neutralizing plasma electrons. In this
case, the dispersion function D is defined by

D = 1 −
ω2

pe

ω2
−

ω2
pb(t)

[ω − kVb(x, t)]2
, (13)

and the quasi-particle dynamics takes place on the sur-
face D = 0. Substituting Eq. (13) into Eqs. (10)–(12),
we obtain the closed system of equations for x(t) and
p(t) = k(t)Vb(x, t)/ω(t) given by

dx

dt
=

Vb(x, t)
1 + (1 − p)3/δ(t)

, (14)

dp

dt
=

[
p − p2

1 + (1 − p)3/δ(t)

]
1

Vb(x, t)
∂Vb(x, t)
∂t

−
[

p(1 − p)/2
1 + (1 − p)3/δ(t)

]
1
δ(t)

∂δ(t)
∂t

. (15)

Here δ(t) = ω2
pb(t)/ω

2
pe, and

ω

ωpe
=

[
1 +

1
(1 − p)2/δ(t)

]1/2

. (16)

It follows from Eq. (16) that for δ $ 1 the maximum
growth rate occurs for p ∼ 1, which corresponds to per-
fect resonance. Equation (15) describes the detuning
from resonance for the particular quasi-particle under
consideration. For a uniform non-compressing ion beam
with Vb = const., Eqs. (14) and (15) are easily solved to
give

p = p0, (17)

x − Vbt

1 + (1 − p)3/δ
= x0, (18)

with general solution for p(x, t) given by

x − Vbt

1 + (1 − p)3/δ
= f(p). (19)

We are interested in obtaining self-similar solutions which
correspond to asymptotic solutions independent of the
initial conditions. Such a solution is given by

(1 − p)3 = δ

[
Vbt − x

x

]
. (20)

For δ1/3[x/(Vbt − x)]2/3 $ 1, we obtain from Eq. (16)

ω

ωpe
= 1 +

(i
√

3 − 1)
2

δ1/3

2

[
x

Vbt − x

]2/3

, (21)

where only the unstable solution with positive imaginary
part of the frequency is retained. From Eq. (21), we
obtain the gain function

G(x, t) =
∫ t

x/Vb

Imω(x, t̄)dt̄ =

=
3
√

3
4
ωpe

Vb
δ1/3x2/3(Vbt − x)1/3. (22)

The gain function in Eq. (22) coincides with the gain
function obtained by direct solution of the linearized fluid
equations [8]. If follows from Eq. (22) that the gain func-
tion never saturates. This is because the quasi-particle’s
detuning factor p − 1 does not change with time [see
Eq. (17)], and quasi-particles which were initially in res-
onance will stay in resonance indefinitely.

For the case where the beam velocity Vb(x, t) changes
dynamically according to Eq. (6), it follows that Eqs. (14)
and (15) cab be expressed as

dp

dT
= p − p(1 + p)/2

1 + (1 − p)3/δ
, (23)

dY

dT
=

1
1 + (1 − p)3/δ

, (24)
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where Y = log[1/(1− x/Xf )] and T = log[1/(1− t/Tf )].
Introducing the quantity q defined by p = 1 + qδ1/3 in
Eq. (15), we obtain equations for q valid to leading order
in the small parameter δ, i.e.,

δ1/3

(
dq

dT
+

5
6
q

)
= −q3, (25)

dξ

dT
= −q3, (26)

ω

ωpe
= ω̂ =

[
1 +

δ1/3

q2

]1/2

, (27)

where ξ = T − Y . As shown below, the instability in
this case saturates when q ∼ δ1/6 $ 1, which justifies
retaining only leading-order terms in Eqs. (25) and (26).
The solution to Eqs. (25) and (26) is given by

exp(−2T )
[
δ1/3(T )

q2
+ 1

]
= I.(28)

ξ = ξ0 − δ(T )1/2

∫ T

0
dT̄

exp[(T̄ − T )/2]
[
I exp(2T̄ ) − 1)

]3/2
, (29)

where I and ξ0 are invariants of the motion. Making
use of Eqs. (27), (28) and (29), we obtain the asymptotic
solution for ω̂(ξ, T ) = ω/ωpe, which is independent of the
initial conditions, i.e.,

ξ = −2δ(T )1/2

∫ 1

exp(−T/2)

dη

[η4ω̂2 − 1)]3/2
. (30)

The corresponding gain function G(x, t) is given by

G(x, t) =
∫ t

x/V 0
b

Imω(x, t̄)dt̄ =

= ωpeTf exp(−Y )Im

∫ ξ

0
dξ̄ exp(−ξ̄)ω̂(ξ̄, Y ). (31)

It can be shown from Eq. (30) that Imω̂ ∼ (δ)3/2/ξ3

for ξ/δ1/2 & 1 so that we can neglect the exponential
contribution in Eq. (31) to the integral, and also extend
the upper integration limit to infinity for ξ & δ1/2. In
addition, we can also replace T → Y on the right-hand
side of Eq. (30). Integrating Eq. (31) by parts, and taking
into account that Im[ω̂(ξ)]ξ ∼ 1/ξ2 → 0 for ξ → ∞, and
Im[ω̂(ξ)]ξ ∼ ξ2/3 → 0 for ξ → 0, we obtain

G = ωpeTf exp(−Y )Im

∫ ∞

0
dξω̂(ξ, Y ) = (32)

−ωpeTf exp(−Y )Im

∫ ω̂(∞,Y )

ω̂(0,Y )
dω̂ξ(ω̂, Y )

= −2α
√

1 − XIm

∫ 1

√
1−X

dη√
η4 − 1/ω̂2

∣∣∣∣
ω̂(∞,Y )

ω̂(0,Y )

,

where α = δ1/2
0 ωpeTf = ω0

pbTf . Equation (30) has sev-
eral solutions. The solution with positive imaginary part

to the frequency, which corresponds to instability, corre-
sponds to ω̂2(∞, Y ) = 1 and ω̂2(0, Y ) = ∞. Therefore,
using Eq. (32), we obtain

G(X) = 2α
√

1 − X

∫ 1

√
1−X

dη√
1 − η4

= α
√

2(1 − X)F [arccos(
√

1 − X)|1/2], (33)

where X = x/Xf and F (x|α) ≡
∫ x
0 dθ/

√
1 − α sin2 θ is

an elliptic integral of the first kind. The gain function
in Eqs. (33) is identical to the gain function obtained
by finding the asymptotic solution of the linearized fluid
equations [2]. The region where it is valid, ξ & δ1/2 or
τ = ωpe(t − x/Vb) & α

√
1 − x/Xf , also coincides with

region where the asymptotic solution is valid [2]. The
fact that we have obtained identical expressions for the
gain function, demonstrates the consistency of the ap-
proximations used in the derivations. The method of
quasi-particles also clarifies the dynamics of the insta-
bility in a physically intuitive way. Figure 2 shows the
normalized instability gain function G(x, t)/α plotted as
a function of distance x/Xf at different times t/Tf =
0.15 (1), 0.25 (2), 0.35 (3), 0.45 (4), 0.55 (5), 0.65 (6),
and 0.75 (7) obtained numerically by solving Eqs. (14)–
(16) (solid curves) and compared with the analytical re-
sult in Eq. (33) (dashed curve). Figure 3 shows a compar-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 2 3 54 6 7

x/X f

G/

FIG. 2: The normalized instability gain func-
tion G(x, t)/α is plotted as a function of
distance x/Xf at different times t/Tf =
0.15 (1), 0.25 (2), 0.35 (3), 0.45 (4), 0.55 (5), 0.65 (6), and
0.75 (7) obtained numerically (solid curve) and compared
with the analytical result in Eq. (33) (dashed curve).

ison of the gain function in Eq. (33) with the gain func-
tion for a beam with zero velocity tilt [Eq. (22)] at t = Tf

for δ0 = (ω0
pb/ωpe)2 = 10−3 and α2 = (ω0

pbTf )2 = 1000.,
i.e.,

Gnotilt(X, t = Tf ) = α
3
√

3
4

X2/3(1 − X)1/3

δ1/6
0

. (34)

As evident from Fig. 3, for δ1/6 $ 1 the velocity tilt
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significantly reduces the growth rate compared to the
case of a beam with zero initial velocity tilt.
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70

x/X f

G

FIG. 3: Comparison of the instability gain as a function of
x/Xf for a beam with velocity tilt (solid curve) and without
velocity tilt (dashed curve) for δ0 = (ω0

pb/ωpe)
2 = 10−3 and

α2 = (ω0
pbTf )2 = 1000.

5. Instability between the plasma ions and the
neutralizing plasma electrons

In this section we consider the two-stream instabil-
ity due to the flow of the neutralizing plasma electrons
though the background plasma ions. In this case, the
dispersion function D is defined by

D = 1 −
ω2

pi

ω2
−

ω2
pe(t)

[ω − kVe(x, t)]2
. (35)

Here,

ω2
pe(t) = ω2

pe(t = 0)
[
1 + δ̄(t)

]
, (36)

Ve(x, t) = δ̄(t)Vb(x, t), (37)

are the background electron plasma frequency-squared
and the electron flow velocity, respectively. In Eqs. (36)
and (37), δ̄(t) = Zbn̄b(t)/n0 $ 1. Substituting Eqs. (36)
and (37) into Eqs. (10)–(35), we obtain the closed system
of equations for Y (T ) and p(T ) = (kVe − ω)/ωpe given
by

dY

dT
=

δ̄(T )
1 − m1/2[p2 − 1]3/2

, (38)

dp

dT
= 2p

[
1 + m−1/2[p2 − 1]−1/2

1 − m−1/2[p2 − 1]−3/2

]
, (39)

where
ω

ωpi
=

p

[p2 − 1]1/2
, (40)

which follows from D = 0. Here, we have made use
of Eqs. (36) and (37) together with Eqs. (5) and (6),

and introduced the new variables Y = log[1/(1−x/Xf )],
T = log[1/(1 − t/Tf )], and ω̂ = ω/ωpi. In Eqs. (39) and
(40), the parameter m is defined as m ≡ mi/me & 1,
and δ̄(T ) = δ̄0 exp(T ) $ 1.

It follows from Eqs. (38)–(40) that for m & 1 the per-
turbations propagate only for p − 1 <∼ 1/m1/3, which
corresponds to a resonance in Eq. (35). If this condi-
tion is not satisfied, the perturbations are unstable but
they do not propagate. Since the perturbations are intro-
duced by the beam at the beam entrance into the plasma,
these perturbations will not propagate into the plasma,
and therefore will not contribute to the dynamics of the
instability anywhere inside the plasma. Near the reso-
nance, Eqs. (38)-(40) can be rewritten as

dω̂

dT
= − 2ω̂3

1 − ω̂3/m1/2
, (41)

dY

dT
= − δ̄(T )

m1/2

ω̂3

1 − ω̂3/m1/2
. (42)

The validity condition p − 1 <∼ m−1/3 corresponds to
m1/6 <∼ ω̂. Equations (41) and (42) can be easily solved
if we neglect the time dependence of δ̄(T ) = δ̄0 exp(T ).
As shown later, this assumption is justified for sufficiently
small velocity tilt. With this approximation in mind, the
solution to Eqs. (41) and (42) is given by

ω̂(T ) − ω̂0 =
2m1/2

δ̄
[Y (T ) − Y0], (43)

1
ω̂2(T )

− 1
ω̂2

0

= 4
{
T − [Y (T ) − Y0]/δ̄

}
, (44)

where the index 0 denotes the initial value at T = 0.
Since the quasi-particles (perturbations) enter into the
plasma at the boundary, we set Y0 = 0 in Eqs. (43) and
(44). Combining Eqs. (43) and (44) we obtain the fre-
quency ω̂(T, Y ) as a function of time and space, i.e.,

1
ω̂2

− 1
(ω̂ − 2Y m1/2/δ̄)2

= 4(T − Y/δ̄). (45)

We are mainly interested at the dynamics of the insta-
bility at time T ∼ 1. By analyzing Eq. (45) one can
distinguish several unstable regions with ω̂ >∼ m1/6. This
gives

Imω̂ = −m1/6

√
3

2

[
Y/δ̄

|T − Y/δ̄|

]1/3

,

for|T − Y/δ̄| $ 1/m, (46)

Imω̂ = − 1√
4|T − Y/δ̄|

, for|T − Y/δ̄| & 1/m,

Y/δ̄ − T <∼ m−1/3 <∼ Y/δ̄. (47)

The gain function G(Y, T ) is given by

G(x, t) =
∫ t

x/V 0
b

Imω(x, t̄)dt̄, (48)
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For T ∼ 1, the gain function G(Y, T ) is zero every-
where except in the region near the plasma entry, where
0 < Y < T δ̄. Substituting Eqs. (46) and (47) into
Eq. (48) one finds that the resonant region in Eq. (46)
gives a contribution which is m1/2 times smaller than the
contribution from the region in Eq. (47). Up to this small
factor, the gain function can be approximated by

G(Y, T ) ≈ ωpiTf

√
T − Y/δ̄ (49)

for Y < δ̄T . Some portion of the beam will be present in
this region close to the beam entrance up to the time

tmax = L0
b/(V

0
b + ∆V 0

b ) = Tf
∆V 0

b /V 0
b

1 + ∆V 0
b /V 0

b

, (50)

which corresponds to a value of the normalized time vari-
able given by Tmax = log(1 + ∆V 0

b /V 0
b ). For sufficiently

small value of the velocity tilt, Tmax ≈ ∆V 0
b /V 0

b $ 1,
and the approximation δ̄(T ) = δ̄0 exp(T ) ≈ δ̄0 that was
made in the derivation of Eq. (49) is justified. Therefore
the maximum value of the gain function, which is reached
near the beam entrance, is given by

Gmax ≈ ωpiTf (∆V 0
b /V 0

b )1/2. (51)

6. Conclusions

The electrostatic two-stream instability for a cold,
longitudinally-compressing ion beam propagating
through a background plasma has been investigated ana-
lytically from the point of view of wave dynamics, where
the plasma waves are represented as quasi-particles
characterized by their position x(t), wavenumber k(t)
and energy (or frequency) ω(t). For a low-density
ion beam propagation in a background plasma with
δ̄ ≡ Zbn0

b/n0 $ 1 we identified two separate stages (the
fast and the slow stages) of the two-stream instability.
During the fast stage, the instability is between the
neutralizing plasma electrons, flowing with the velocity
∼ (nb/ne)Vb, and the background plasma ions. During
this initial stage, the beam ions are relatively unaffected.
We find that due to the small velocity of the neutralizing
background electrons, the quasi-particles do not propa-
gate far from the plasma boundary, and the instability
is limited to the region x < (nb/ne)Xf $ Xf . The rate
of the instability growth and the number of e-folding are
significantly affected by the velocity tilt [Eq. (51)]. At
later times, a two-stream instability between the beam
ions and the neutralizing background plasma electrons

may develop. During this later stage of instability,
which directly affects the beam ions, it is found that
the longitudinal beam compression strongly modifies the
space-time development of the instability. In particular,
the dynamic compression leads to a significant reduction
in the growth rate of the two-stream instability com-
pared to the case without an initial velocity tilt by a
factor Gmax/Gnotilt

max ∼ (ωpb/ωpe)1/3 $ 1. The number of
e-foldings is proportional to the number of beam-plasma
periods 1/ωpb during the compression time Tf . The
two-stream instability is complectly mitigated by the
effects of dynamical beam compression when ωpbTf

<∼ 1.
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