HIF Driver Point Designs

S.S. Yu,¹ R.P. Abbott,² R.O. Bangerter,¹ J.J. Barnard,² R.J. Briggs,³ T. Brown,⁴ D. Callahan,² C.M. Celata,¹ R. Davidson,⁴ C.S. Debonnel,¹ A. Faltens,¹ A. Friedman,² D.P. Grote,²
E. Henestroza,¹ I. Kaganovich,⁴ J.W. Kwan,¹ P. Heitzenroeder,⁴ J.F. Latkowski,² E.P. Lee,¹ M. Leitner,¹ B.G. Logan,¹ S.M. Lund,² W. Meier,² P.F. Peterson,⁵ D. Rose,⁶ G-L. Sabbi,¹ P.A. Seidl,¹ W.M. Sharp,² D.R. Welch⁶

Presented at the HIF2004 PPPL June 7-11, 2004 Princeton, New Jersey

 ¹ Lawrence Berkeley National Laboratory, ² Lawrence Livermore National Laboratory, ³
 Science Applications International Corporation, ⁴ Princeton Plasma Physics Laboratory, ⁵ University of California, Berkeley, ⁶ Mission Research Corporation

Summary

- An HIF driver point design must be an integrated system that is self-consistent from injector to target
- The Robust Point Design (RPD) is an integrated system based on a single accelerator with multiple beams
- Ongoing Modular Point Design (MPD) study seeks a self-consistent integrated solution based on 10-20 accelerator modules with single beam/module

A Robust Point Design study established a baseline for a multiple-beam quadrupole induction linac HIF driver

Integration of target, chamber, and accelerator requirements led to the self-consistent point design

Ion: Bi⁺ (A=209) Main pulse: 4 GeV Foot pulse: 3.3 GeV 120 beams total (72 main, 48 foot) Pulse energy: 7 MJ Final spot radius: 2.2 mm

Target design is a variation of the distributed radiator target (DRT)

- This new design allows beams to come in from a larger angle, up to 24 degrees off axis.
- Yield = 400 MJ, Gain = 57 at $E_{driver} = 7 MJ$

A building block pulse shape is used

The Robust Point Design (RPD) beam line

Neutralization is required for small spot sizes

Results for standard Xe main pulse

- time histories of rms radius at selected axial positions
- plasma is electrically connected to wall by images and emission

- 2.5 mm waist is close to value needed by distributed-radiator target
- Bi is easier to focus and meets spot requirement

The Heavy Ion Fusion Virtual National Laboratory

Beam envelop in final focus region

x- and y- envelopes for the Block E main pulse beams in the final focus system. The target is to the right.

The Heavy Ion Fusion Virtual National Laboratory

Final focus configuration uses four magnets

Magnet Lifetime: Sufficient material has been added to make the shielding & activation results very robust

Magnet lifetimes, which are limited by dose to the insulators and neutron fluence to the superconductor, exceed the plant lifetime; Insulator & superconductor lifetimes (in years) are:

- Last magnet: 230/260
- 2nd magnet: 410/1580
- 3rd magnet: 100/610
- Waste disposal ratings are significantly reduced from previous work: 1.7, 0.5, 0.4 (⁹⁴Nb)
- Increasing liquid stand-off distance in vortices (from 1→5 mm) will reduce lifetimes by ~2x

 Optimizing shielding to increase neutron effectiveness (at cost of gammaray shielding effectiveness) should enable all magnets to qualify for disposal as lowlevel waste; adequate margin exists for magnet lifetime to exceed plant life.

Illustration of final focus arrays is a real eye opener

From Tom Brown, PPPL

The Heavy Ion Fusion Virtual National Laboratory

Example of critical physics issue: drift compression of bunch length by factors of 10 to 30

Induction acceleration is most efficient at τ_{pulse} ~100 to 300 ns

Issues that need more study and experiments:

- 1. Matching beam focusing and space-charge forces during compression.
- 2. Beam heating due to compression (conservation of longitudinal invariant)
- 3. Chromatic focus aberrations due to velocity spread

Target capsule

Modular Point Design Example: A 16 module, 1 beam/module solenoid focus option¹

1. B.G. Logan, "A chamber integrated,multi-beam, heavy ion power plant ...," Draft, June 17, 2002.

rerere

The Heavy Ion Fusion Virtual National Laboratory

Solenoids can transport high line charged density at beam low energies

Maximum transportable line charge density has a different scaling than quadrupoles on key quantities:

$$\lambda \approx \left(10 \frac{\mu C}{m}\right) \left(\frac{B}{10T}\right)^2 \left(\frac{r_p}{10cm}\right)^2 \left(\frac{133}{A/q}\right) \left(\frac{\eta}{1.0}\right) \left(\frac{a/r_p}{1.0}\right)^2$$
Advantage for large *B*, *r_p*,
Advantage for small *A/q* (*cf.* extensive experience with e-
induction linacs)
Note λ is independent of energy, so very low
energy transport is possible

For magnetic quadrupoles,

 $\lambda \sim (q/A)^{1/2}\beta r_p$, favoring small beams and high energy. For electric quadrupoles,

 $\lambda \sim \text{independent of } q/A, r_p, \text{ and } \beta \text{ (except at very low energy when } \lambda \sim \beta^2 \text{)}, favoring small beams and low (but not too low) ion energy and heavy ions$

RPD and MPD accelerators have different scalings

Injector Options

Three injector options have been suggested so far:

- 1. Standard injector with aggressive bunch compression within the accelerator. $\lambda \sim 0.25 \ \mu$ C/m compressed to ~ 25-60 μ C/m requires large initial pulse duration. (May require high gradient to increase initial λ and minimize initial pulse duration.)
- Accel/decel injector: Use high voltage diode to obtain large current; immediately decelerate, to reduce bunch length; use load-and-fire acceleration to rapidly decrease pulse duration and minimize core volume.

3. β =0 injector: Inject plasma into solenoid. Apply a longitudinal electric field to separate ions from electrons. Utilize velocity independence of solenoids to confine low velocity beam.

Target will be "hybrid" design, allowing larger focal spots¹

"Hybrid design" for Modular Point Design:

Spot radius: ~5.0 mm round (or ~5.4 x 3.8 mm elliptical) Pulse energy: 6.7 MJ Minimum 8 beams per side Ion range equivalent to 4.5 GeV Pb (main) and 3 GeV Pb (foot)

New task: define the allowable velocity spread that maintains high target performance

In contrast, Robust Point Design used "Distributed radiator design"

Spot radius: 1.8 mm x 4.2 mm (main) Pulse energy: 6.5 MJ Ion range equivalent to 4 GeV Pb (main) and 3.3 GeV (foot)

1. D.A. Callahan, M.C. Herrmann, and M. Tabak, Laser and Particle Beams, 20, 405 (2002).

The Heavy Ion Fusion Virtual National Laboratory

The drift length for NDC is determined by how much velocity tilt the target can accomodate

Drift length	$\Delta v_1 / v_1$	$\Delta v_m / v_m$
134 m	.037	.256
268 m	.0188	.128
536 m	.0095	.0638
1032 m	.0048	.0319

BERKELEY LA

Chamber Options

Vortices with liquid FLiNaBe or FLiBe serving as wall protection, and heat absorbing fluid, may be well suited for cusp or solenoidal focusing options (upper left).

Hi-life-like chamber protections schemes (as in the RPD design, lower right) may be extendable to assisted pinch designs (lower left)

A solenoid-based final focus system for a modular driver has attractive features

- Large cone angle θ ~ 100 mr produces a small spot (~ 5 mm) on target for ϵ ~ 4×10⁻⁴ m-rad
- Moderate fields allow normal magnets
- Highly stripped ions (200-300 MeV Ne⁺¹⁰)
- Fringe field aberrations minor

Self-consistent target / chamber / drift compression: an example

Hybrid Target	Solenoid / NDC	Assisted Pinch
Pulse shape Range shortening	Controlled by initial velicity shaping at entrance to NDC Beam at exit of NDC maintains initial velocity tilt	Independent of Beam current Can accommodate large energy variations
Spot size (~5mm radius)	Driver optimized with high Q/M	Tighter focusing with high Q/M
	Some stripping can occur in NDC	Insensitive to Z-variation
Symmetry	Few beam driver	Anharmonic focusing in Z- pinch symmetries
Shallow entrance angle	Nearly parallel beamlines	Beam merging in adiabatic lens

An integrated PIC Simulation (LSP) from Accelerator Exit to Target Demonstrates 92% energy deposition within required 5mm spot

The RPD and MPD have distinctly different architectures

Driver components	RPD (M beams M=120)	MPD (N modules N=10-20)	
Accelerator/Pulse Power System (PPS)	1 accelerator/1PPS	N accelerators/1PPS	
lon species	Heavy - Bi (Xe possible)	Medium (Ne to Ar)	
Injector	M compact injectors	N high λ injectors	
Transport	Multiple quad array for M beams	Solenoid/hybrid (1 solenoid/module)	
Drift Compression	M vacuum drift compression beamlines	1 Neutralized drift compression beamlines/module	
Final focus / chamber transport	Quad focusing / neutralized ballistic transport	Solenoid in plasma or assisted pinch	
Chamber	HYLIFE II	Vortex chamber or modified HYLIFE	
Target	Distributed Radiator Target With Large Angle	Hybrid Target	

Summary

- An HIF driver point design must be an integrated system that is self-consistent from injector to target
- The Robust Point Design (RPD) is an integrated system based on a single accelerator with multiple beams
- Ongoing Modular Point Design (MPD) study seeks a self-consistent integrated solution based on 10-20 accelerator modules with single beam/module

A 7 MJ induction linac driver using Bi+ is the baseline

	Along Accelerator				
	Injector	Ti –	Ti -		
	Exit	3.3 <u>GeV</u>	4.0 GeV		
Ion energy, <u>GeV</u>	0.0016	3.3	4.0		
Pulse duration, µs	30	0.2	0.2		
Ion speed/light speed	0.004	0.18	0.20		
Pulse length, m	36.5	10.9	12.0		
Beam current, A*	0.63	94	94		
Beam radius, cm*	3.8	1.9	1.9		
Bore radius, cm	5.3	2.9	2.9		
Field gradient, T/m	62	106	106		
Core inner radius, m	1.29	0.77	0.62		
Core build, m	0.48	0.47	0.47		
Quad Occupancy, %	0.75	0.090	0.075		
Half lattice period, m	0.30	3.83	4.43		
Acc. gradient, MV/m	0.026	1.5	1.5		
Dist. from injector, km	0	2.39	2.86		
*For max current beams (Block E)					

Accelerator parameters at:

Injector

- Foot pulse final energy (3.3 GeV)
- Main pulse final energy (4.0 GeV)
- Ion = Bi+ (A = 209 amu)
- Length = 2.9 km
- Driver efficiency = 38%
- Total cost = \$2.8B

147 J beam energy transport design with 105 m drift length

- 3.35-kA, 10-cm, 8-mm-mrad, 231-MeV, 210 ns Ne⁺¹ beam (147 kJ) with a 20% perfect energy tilt to axially focus at L=104.5 m
- Injected Billouin Flow equilibrium into 10 T
- Transition to neutralized drift ($\sigma = 10^{12} \text{ s}^{-1}$) with .14 T at z = 2.4 m -n_p/n_b =10, r_L/ $\lambda_{sd} \approx 0.01 \ll 1$ (no self fields)
- 5 kG dipole field at 2.2 m, no plasma electron transport
- Focusing solenoid at 90-100 m (2.7 T)
- 50-kA, discharge channel z>101 m: 2-0.5 cm radius in 1.5 m adiabatic channel; 3-m long, .5-cm radius straight channel

Good energy transport to target

- 92% of 147 kJ energy strikes target within 5 mm radius
- Halo forms from lack of "ears" and due to filamentation (s model dependent)

Neutralization of beam space charge in fusion chamber is critical to focusing of driver beams

Plots show 3.2-kA beam of singly charged 2.5-GeV xenon ions Beam radius vs time is shown at selected points over a 6-m focal length

Without plasma neutralization, the ion kinetic energy would have to *triple* to recover the 2-mm focal spot for the target, increasing the linac voltage, length, and cost

