Electrical Conductivity Measurements of Ion Driven High Energy Density Matter

S. Udrea, C. Constantin, E. Dewald, J. Jacoby, N. Tahir, D. Varentsov, D.H.H. Hoffmann

> Technische Universität Darmstadt GSI Darmstadt Lawrence Livermore National Laboratory Universität Frankfurt

HEDgeHOB Collaboration

- EOS of high energy density matter
- Phase transitions
- Transport and radiation properties electrical conductivity
- Energy loss of heavy ions in HED matter

Why electrical conductivity?

- Fundamental transport coefficient
- Provides complementary information to EOS
- Related to other physical properties:
 - Thermal conductivity
 - Free electron contribution to energy loss
 - Reflectivity and radiation transport

HHT Experimental Area

The ion beam

Target Design

HIF Symposium, Princeton, June 2004

Measurement Circuit

Experimental Signal

Recovered signals

Hydrodynamics: Lead

HIF Symposium, Princeton, June 2004

Simulation Procedure

- 1. BIG2 2D hydrodynamic code $\Rightarrow \rho_{\mathbf{m}}(\mathbf{r}, \mathbf{z}, \mathbf{t}), \mathbf{T}(\mathbf{r}, \mathbf{z}, \mathbf{t})$
- 2. Tables with available experimental conductivity data $\sigma(\rho_{\mathbf{m}}, \mathbf{T}) \Rightarrow \sigma(\mathbf{r}, \mathbf{z}, \mathbf{t})$
- 3. FreeFem++ 2D finite elements code $\phi(\mathbf{r}, \mathbf{z}, \mathbf{t}), \vec{\mathbf{j}}(\mathbf{r}, \mathbf{z}, \mathbf{t}) \Rightarrow < \rho > (\mathbf{t})$

Current Distribution

Copper target heated by an argon beam

Current Distribution

Results

HIF Symposium, Princeton, June 2004

Results

HIF Symposium, Princeton, June 2004

Conclusions

- First experimental results on changes of the electrical conductivity of various metals (Pb, Cu, Ag) heated by intense beams of ¹⁸O and ⁴⁰Ar
- Extensive 2D hydrodynamic and current transport modelling of the performed experiments
- Further experimental and theoretical work has been stimulated

Outlook

- Improvement of electrical measurements
 (eg. noise, better statistics, 4-point scheme)
- Precise determination of thermodynamic parameters: T(r, z, t) and $\rho_m(r, z, t)$
- Theoretical description of metal-to-insulator transition
- Experiments on metallization (phase) transitions (HEDgeHOB)

A. Shutov and I.V. Lomonosov (IPCP Chernogolovka) for support with EOS-modell and the 2D hydrocode

German Ministry for Education and Research (BMBF) for financial support