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Multiple Beam Transport 

MIT Quadrupole Array Design for IRE

Quadrupole array configuration

Square unit cells

Shell-type coils: 
better magnetic
properties

Racetrack coils: 
better mechanical
properties

Superconducting magnets are required for efficiency in the HIF driver
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∝ ∂Bqy /∂x

η = 0.4489
α = 0.2508

G  = 84.2 T/m
lq = 10.1   cm

2L = 45 cm

d1 = 6.219
d2 = 18.58

Beam Physics Experiments

High Current Experiment (HCX)

Opportunity to address key R&D issues for HIF superconducting magnets:

…while serving the near term program needs: • Advance beam science 
• Progress on IBX design

Cost-effectiveness Compactness Reliability Performance trade-offs

HIF2004

Conductor: Jc (5T,4.5K) = 2.55 kA/mm2

Operating Point: Iop = 0.85 Iss ;
Jcu(Iss) ≤ 1.3 kA/mm2

Integrated Gradient:                          T 

Axial Geometry:

Lcoil = 125 mm
Lmat ≤ 155 mm

Transverse Geometry:

rclear = 35 mm
wmax ≤ 64 mm
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Geometric spec is given in 
terms of the array cell size

HCX Quadrupole Specification

⇔ G ≈ 100 T/m
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Requirement (50 periods):

δF ≤ 50 (10-4 “units”) @ rg = 25 mm
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HCX Field Quality Specification

Definitions: Allows body-end compensation 
to simplify and shorten the coil

Harmonics at 20 mm radius for LLNL5e model
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A factor of ~10 improvement may be needed for beam transport in HIF driver
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Magnet Design Concepts

Fabrication and assembly

Coil layout

• simpler tooling and parts
• mechanical support/assembly
• compatible with brittle SC

Shell-type (cosθ) Block-type

• magnetically more efficient
• radially more compact
• complex geometry, fabrication

Racetrack coils Conductor in groove (cylinder, plate)
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Baseline Design

A A

• Block-coil (square) geometry
• 8 double-pancake racetracks

HCX-A Ramp History
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HCX-B Ramp History

Magnet design:

• Pre-load by split-pole and wedges
• Epoxy-impregnation in holders 
• Modules supported by yoke/shell

Coil fabrication and support:

• Rutherford cable or monolith
• Fast training to short sample 
• No retraining after th. cycle

Test results (2 pre-series models):
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Design Optimization (HCX-C)

Coils

Coil holders

Coil preload system (wedges)New design features:

• “square” ends for magnetic efficiency

• Aluminum coil holders for lower cost

• Rutherford cable for flexible design 

• SSC inner wire, Cu/Sc=1.3:1.

Fabrication experience:

• Some difficulties due to tight bends
� winding radius must be increased

• Larger than expected cable size 
• Higher deflections of Al holders
� deviations from design geometry
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HCX-C Test

HCX-C Quench History
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• Achieved conductor-limited gradient (132 T/m) in 2 quenches (stable after Q4)

• No retraining after thermal cycle & no significant dependence on ramp rate.
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HCX-C Magnetic Measurements
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NON-ALLOWED HARMONICS VS RANDOM ERRORS (ONE  SIGMA) 
 

Order 
n 

Measured 
|cn| (units) 

Random- Block 
|cn| (units) 

Random-Quadr. 
|cn| (units) 

3 5.3 2.7 6.5 

4 2.5 1.8 1.8 

5 7.0 0.8 0.3 

7 0.6 0.2 0.5 

8 1.0 0.1 0.3 

9 2.8 0.05 0.1 

 (#) Random displacements in a ±100 µm interval, flat distribution

(#) (#)

INTEGRATED HARMONICS

Current
(A)

Temp
(K)

Data 
type

Gradient
B2/r0 (T)

12-pole
|c6| (units)

20-pole
|c10| (units)

9.5 300 Meas. (*) 0.0674 109 15.5

9.5 - Calc. 0.0726 121 19.1

2500 4.2 Meas. 11.03 5.8 8.5

2500 - Calc. 11.63 8.1 8.7

(*) Averages for ± 9.5 A current and clock/counterclockwise probe rotation 

INTEGRATED HARMONICS

Current
(A)

Temp
(K)

Data 
type

Gradient
B2/r0 (T)

12-pole
|c6| (units)

20-pole
|c10| (units)

9.5 300 Meas. (*) 0.0674 109 15.5

9.5 - Calc. 0.0726 121 19.1

2500 4.2 Meas. 11.03 5.8 8.5

2500 - Calc. 11.63 8.1 8.7

(*) Averages for ± 9.5 A current and clock/counterclockwise probe rotation 
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Magnetic Field Optimization (HCX-D)

Turns removed

Pockets

-1 5 .0 0

-1 0 .0 0

-5 .0 0

0 .0 0

5 .0 0

1 0 .0 0

1 5 .0 0

2 0 .0 0

2 5 .0 0

0 1 0 2 0 3 0 4 0

1 2 -p o le  (b 6 )

2 0  p o le  (b 1 0 )

2 8 -p o le  (b 1 4 )

Harmonics (units) vs cut-out position (mm)

• 3 turns /layer removed from inner coil, 1 turn /layer removed from outer coil 
• Two rectangular pockets introduced in the inner pole-island, facing the bore

All design harmonics within 1 unit at the reference radius (22 mm)
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New Coil Fabrication Procedure (HCX-D)

Coil winding Impregnation mold Insertion

Coil holder Impregnated coil Completed coil

Monolithic pole; coils are impregnated separately, then inserted in holder
Goals:  accurate and reproducible geometry;  reduction of labor and parts
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HCX Quadrupole Cost

• Experience with prototype fabrication
• Cost of parts for the prototypes
• Quotes for larger sets of parts 
• Comparison with other accelerators

Strand 0.5 k$
Cabling 0.15 k$
Insulation 0.2 k$
Total conductor 0.85 k$

Coil holders (Al) 1 k$
Inserts/wedges 0.65 k$
Insulators/spacers 0.26 k$
Yoke/shell 1.25 k$
Total parts 3.16 k$

Coil winding 16 hrs
Coil loading 12 hrs
VPI 6 hrs
Splices 6 hrs
Alignment, 8 hrs
Shell welding 2 hrs
Total assembly 50 hrs
(at 50$/h) 2.5 k$

Overhead/fees 2.5 k$
Total/quad 9 k$

Cost basis:

• Production of 100 quads (HCX “Phase II”)
• Conductor/cable procured by project
• Other parts procured by manufacturer
• Overhead/fees at 40% of labor and parts
• Project costs are not included 

Assumptions:

Estimated cost for each quad: 9 k$
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Prototype Focusing Doublet

• Compatible with the HCX short lattice period of 45 cm  

• Warm axial gap between cryostat tanks as (acceleration, diagnostics, pumping) 

• Leads & cryogen supplies provided through central chimney (max. core efficiency)
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Cryostat Test Results

First cool-down: • thermal short in the beam tube region
• unacceptable heat loads
• magnets close to short sample (-3%)
• no training

Second cool-down: • thermal short repaired
• Heat loads ~ 1W in quad+chimney
• magnets at the short sample limit
• low ramp-rate dependence

Will be published at the 2004 Applied Supercond. Conference
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IBX Magnet System

IBX 
Single-layer
Quad Design

Cost:
6 k$/unit

Cryostat is  
magnet cost driver

(single channel,
accel. gaps)

HCX doublet:
35 k$

IBX Magnet Cost

M&S (Lab)
10%

Labor
24%

M&S 
(company)

38%

Overhead/fees
28%

'LVWULEXWLRQ�E\�&DWHJRU\

RHIC Magnet Cost

M&S (Lab)
22%

Labor
11%

M&S 
(company)

38%

Overhead/fees
29%

'LVWULEXWLRQ�E\�&DWHJRU\
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Advanced Superconductors

Superconducting wires:

NbTi:
- well developed
- perfomance limitations

Nb3Sn:
- Substantial progress
- New baseline for HEP 

HTS:
- Very good potential
- Practical challenges Courtesy of Peter Lee - Univ. of Winsconsin, Madison

Best samples of 100 m length capable materials

Nb3Sn Quads (including racetrack) are presently being developed for the LHC 
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Summary

HCX/IBX: opportunity to address key magnet design issues:

• Design simplicity and cost-effectiveness
• Aperture, Gradient and Field Quality tradeoffs
• Optimization of the conductor parameters
• Modularity
• Compact cryostats compatible with induction acceleration

Prototypes tested with excellent results 

Cryostated doublet successfully fabricated and tested

Further optimization in progress

Cost estimates generated in support of the IBX design
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Lab Credits

LBNL:Program coordination; specs; magnet design and test

LLNL:Magnet design and fabrication; cryostat design

AML: Magnet design and fabrication; value engineering

MIT: Magnet design and test; cryostat fabrication and test


