DRIFT COMPRESSION AND FINAL FOCUS OPTIONS FOR HEAVY ION FUSION

Hong Qin1**, Ronald C. Davidson**1**, John J. Barnard** $\mathcal C$ **and Edward P. Lee**3

1 Plasma Physics Laboratory,Princeton University 2 LawrenceLivermoreNationalLaboratory 3 Lawrence Berkeley NationalLaboratory

Presented at the 15th Heavy Ion Fusion Symposium Princeton, NJ,June 7-11, 2004

[∗]Research supported by the U.S. Department ofEnergy.

- \bigcup target. acceleration phase and before the beam particles are focused onto the fusion essary to longitudinallycompress the beam bunches by a large factor after the In the currently envisionedconfigurations forheavy ion fusion (HIF), it is nec-
- \bigcirc beam is required to be In order to obtain enough fusion
beam is required to be order 10³. energy gain, the peak current for sion energy gain, the peak current for each $10³A$, and the bunch length to be as short as 0.5m.
- \bigcirc technically difficult to accelerate short bunches at high current. To deliver the beam particles at the required energy, it isboth expensive and
- \bigcup frame. ing a negative longitudinal velocity tilt over the length of the beam in the beam The objective of drift compression is to compress a long beambunch by impos-

- \bigcup Assume a $\mathcal{C}s$ + beam for HIF driver with \overline{A} = 132.9, \mathcal{Q} 1 1, (γ − \bigcup $m c^2$ \mathbf{I} 2.43 $GeV,$ $\overline{\mathcal{S}}$ *bf* $= 0.27$ m, and $< I >$ = 2254A.
- \bigcup The goal of drift compressionis:
- \bigcirc Length z *b* −→ × 1 21.8 .Perveance \bm{X} −→ ×21.8.
- \bigcup Allowable changes of other systemparameters:
- \bigcirc Velocity tilt $|c|$ *zb*| −→≤ 0.01.
- \bigcirc Beam radius $\mathcal{D}% _{M_{1},M_{2}}^{\alpha,\beta}(-\varepsilon)$ −→ × 2.33.
- \bigcirc Half lattice period L −→ ×

1
2
1
2
1
2
1
2
1
1
1
1
1
1
1

- \bigcirc Filling factor $\mathcal{U}% _{A_{1},A_{2}}^{\alpha,\beta}(-\varepsilon)=\mathcal{U}_{A_{1},A_{2}}^{\alpha,\beta}(-\varepsilon)$ −→ × 4. $\eta B'$ −→ × 4.
- \bigcup The beam pulse need to focused onto a target with 2mm characterisiticsize.

- \bigcup Final focus
- \bigcirc Th.I-07 **J. Barnard** (LLNL - USA)
- \bigcup Neturalizedfinal focus
- \bigcirc W.P-13 **P. Efthimion** (PPPL-USA)
- \bigcirc W.P-20 **J. Hasegawa** (TiTech-Japan)
- \bigcirc Th.I-05 **P. Roy** (LBNL - USA)
- \bigcirc Th.I-06 **D. Welch** (Mission ResearchCorp - USA)
- \bigcup Drift compression
- \bigcirc W.P-19 **W. Sharp** (LLNL-USA)
- \bigcirc W.P-17 **T. Kikuchi** (Univ. of Tokyo -Japan)
- \bigcirc Th.I-09 **T. Kikuchi** (Univ. of Tokyo -Japan)

- \bigcup Longitudinal Dynamics. What is the dynamics of $z_b(s)$?
- \bigcirc How long is the beam line? (s*f* $916 =$ \mathfrak{m}
- \bigcirc How large initial velocity tilt can we afford? (v *zb*0 \blacksquare −0.0143)
- \bigcirc Stability?
- \bigcup target? Transverse Dynamics and Final Focus. How to focus the entirebeam onto the
- \bigcirc Non-periodiclattice design, $L(s),$ $B'(s)$, $\eta(s),$ $\kappa(s),$ $K(s)$.
- \bigcirc tions? Non-periodic envelope, matchedsolutions?adiabatically-matchedsolu-

- \bigcup Self-similar symmetry if required for focusing the entire beampulse.
- $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ LongitudinalDynamics.
- \bigcirc Self-similarsolutions for un-neutralizedbeams.
- \bigcirc Self-similarsolutions for neutralizedbeams.
- \bigcirc Pulse shaping
- \bigcup TransverseDynamics and Final Focus.
- \bigcirc Non-periodic lattice and adiabatically-matchedbeams.
- \bigcirc Time-dependent lattice for deviation from self-similarsymmetry.

 \bigcup Transverse envelope equations for every slice in a bunchedbeam,

$$
\frac{\partial^2 a(s, Z)}{\partial s^2} + \kappa_q(s) a(s, Z) - \frac{2K(s, Z)}{a(s, Z) + b(s, Z)} - \frac{\varepsilon_a^2(s, Z)}{a(s, Z)^3} = 0,
$$

$$
\frac{\partial^2 b(s, Z)}{\partial s^2} - \kappa_q(s) b(s, Z) - \frac{2K(s, Z)}{a(s, Z) + b(s, Z)} - \frac{\varepsilon_a^2(s, Z)}{b(s, Z)^3} = 0,
$$

- \bigcirc $K(s, Z)$ ≡ \mathcal{C} \mathcal{E} $\lambda(s,Z)/m\gamma^3$ β^2 \mathcal{C} effective perveance of slice Z.
- \bigcirc $\overline{\mathcal{L}}$ **All Contracts** longitudinalcoordinatefor different slices.
- \bigcirc $K(s, Z)$ and $\lambda(s,Z)$ are determined by the longitudinaldynamics.
- \bigcup slices and focus them onto the same focal spot at the target. A lattice design for one slice may not be able to transversely confine otherbeam
- \bigcup the different Most of the other slices cannot be focused at all due to the mismatch induced $\overline{\mathsf{A}}\mathsf{q}$ s-dependences of the current and emittance.
- \bigcup slices depend on beam pulse onto the same focal spot only if the current and emittance of all the A fixed drift compression and final focus lattice will be able to focus the entire s in the same manner.

 \bigcup $a,\,b,\,\lambda,\,\varepsilon$ *x*, and ε *y* for different $\overline{\mathcal{L}}$ are generated by the same solution through a one-parameter group transformation admittedby the envelope equations

$$
\begin{pmatrix}\na[s, Z(\delta = 0)] \\
b[s, Z(\delta = 0)] \\
\lambda[s, Z(\delta = 0)] \\
\lambda[s, Z(\delta = 0)]\n\end{pmatrix}\n\longrightarrow\n\begin{pmatrix}\na[s, Z(\delta)] \\
b[s, Z(\delta)] \\
\lambda[s, Z(\delta)] \\
\epsilon_y[s, Z(\delta = 0)]\n\end{pmatrix}.
$$

 \bigcup envelope equations. It is easy to check that the following scaling group is a symmetry group of the

- \bigcup of one slice. Obtain a family of matched and focused solutionsfor different slices from that
- \bigcup has the same It is called self-similar symmetry because every field quantity for different slices s-dependence.
- \bigcup The ratio of line density between different slices is \mathcal{C} independent,

 \bigcup Because S is conserved by the group transformation, the s-dependence and the $Z\,$ -dependence of $\lambda(s,Z)$ are separable

- \bigcup direction. direction. ics.Line density during drift Need to findself-similarcompression driftcompression is determinedsolutions by the longitudinal in thelongitudinal dynam-
- \bigcup **The** functions $\lambda_b(s)$ and $h(Z)$ will be determined from the symmetry groups of the governing equations for the longitudinaldynamics.

- \bigcup **One** dimensional fluid model in thebeam frame for
- \bigcirc $\lambda(t,z)$: line density,
- \bigcirc u *z* (t,z) : longitudinalvelocity,
- \bigcirc p *z* (t,z) : longitudinalpressure.
- \bigcup \mathcal{G} -factor model for electric field **[Davidson & Startsev, PRSTAB 2004]**.

- \bigcup Take \mathcal{G} and $\ell_\mathcal{Y}$ as constants for presentpurpose.
- \bigcup External focusing: − κ *z* $\widetilde{\zeta}$

 \bigcup In thebeam frame:

- \bigcup Nonlinearhyperbolic PDE system
- \bigcup The energy equation is equivalent to

- \bigcup tions) for PDEs is the Lie group symmetry analysis. The systematic method for finding similaritysolutions(group-invariantsolu-
- \bigcup Two types of point symmetries cana
P used.
- ❍ **Classical point symmetry**, which transfers a solution of the PDEs into another solution.
- \bigcirc **Non-classical point symmetry** \checkmark under which a solution is invariant.
- \bigcup finitesimalfinitesimal generators. generators. The symmetry groups of both types aredetermined $\overline{\mathsf{A}}\mathsf{q}$ thecorrespondingin-
- \bigcirc equations.Infinitesimalgenerators form a Lie algebra. Classical point symmetry: linear and algorithmicallysolvable dertmining
- \bigcirc dertmining equations.NO
No infinitesimal Lie algebra. Non-classical point symmetry:nonlinear and non-algorithmically-solvable
- \bigcup wardly. Once point symmtries are found, similarity solutions canbe derived straightfor-

 \bigcup PDE system are found to be a 4D Lie algebra The infinitesimalgenerators of the classical point symmetry for the nonlinear

$$
\frac{d\lambda}{d\delta} = 2k_2 \lambda,
$$

\n
$$
\frac{du_z}{d\delta} = k_2 u_z + k_4 \cos(t\sqrt{\kappa}) + k_3 \sin(t\sqrt{\kappa}),
$$

\n
$$
\frac{dv_z}{d\delta} = 4k_2 p_z,
$$

\n
$$
\frac{d^2z}{d\delta} = k_2 z - k_3 \cos(t\sqrt{\kappa})/\sqrt{\kappa} + k_4 \sin(t\sqrt{\kappa})/\sqrt{\kappa},
$$

\n
$$
\frac{dt}{d\delta} = k_1.
$$

- $\overline{\mathbb{Q}}$ For every set of k_{i} , the PDE system reduces to an ODE system, and there is a similarity solution.
- \bigcup Self-similar symmetry −→ $\overline{\mathcal{L}}$ is an invariant of the symmetry group transformation −→ k, $= 0.$
- \bigcup Self-similarsolutions by the classicalpoint symmetry form a 3D vector space.

 \bigcup (k_1,k_2,k_3,k_4) = (0, \bigcirc sin $\alpha,$ cos $\overline{a})$. The reduced ODE system can \mathbf{d} easily integrated,

$$
\begin{aligned}\n\lambda(t,z) &= \lambda_0 \frac{\cos \alpha}{\cos(\alpha + t\sqrt{\kappa})}, \\
u_z(t,z) &= -z \frac{z'_b(t)}{z_b(t)} = -z\sqrt{\kappa} \tan(\alpha + t\sqrt{\kappa}), \\
p_z(t,z) &= p_{z0} \frac{\cos(\alpha + t\sqrt{\kappa})}{\cos(\alpha + t\sqrt{\kappa})}, \\
z_b(t) &= z_{b0} \frac{\cos(\alpha + t\sqrt{\kappa})}{\cos \alpha}. \n\end{aligned}
$$

 \bigcup Maximumcompressionratio is

 \bigcup Choose appropriate values for $\kappa,$ α, and t*f* for required compression ratio and maximumvelocity tilt.

- \bigcup linear and difficult to solve for general solutions. For the non-classical point symmetry group, the determiningequations are non-
- \bigcup Case (1).Infinitesimalgenerator

$$
\frac{d}{d\delta}(\lambda, u_z, p_z, t, z) = (0, \frac{u_z}{z}, 0, 0, 1).
$$

- \bigcirc Density— flattop.
- \bigcirc Pressure— flattop.
- \bigcirc Velocity tilt— linear.
- \bigcirc Self-similar solution $-$ the same as the previous example.

 $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ Case (2).Infinitesimalgenerator

$$
\frac{d}{d\delta}(\lambda, u_z, p_z, t, z) = (0, \frac{u_z}{z}, \frac{2p_z}{z}, 0, 1).
$$

 \bigcup Invariants of the group transformation (in addition to \mathcal{L}

:

$$
\begin{array}{rcl}\lambda(t,z)&=&\lambda_b(t),\,v_{zb}(t)&=-\frac{v_z(t,z)}{z_b(t)}\,,\\[5pt] p_{zb}(t)&=&\frac{p_z(t,z)}{z_b^2(t)},\,v_{zb}(t)&=-\frac{dz_b(t)}{dt}\,. \end{array}
$$

Ш

\bigcup The \approx -dependencedrops out,

$$
z_b \lambda_b = const. = N_b / 2,
$$

\n
$$
\frac{z_b}{dz_{2b}} + \frac{\kappa_z}{m \gamma^3 \beta^2 c^2} z_b + \frac{\varepsilon_1^2}{z_b^3} = 0,
$$

\n
$$
\frac{d^2 z_b}{ds^2} + \frac{\kappa_z^2}{m \gamma^3 \beta^2 c^2} z_b + \frac{\varepsilon_1^2}{z_b^3} = 0,
$$

 \bigcup Case (3).Infinitesimalgenerator

$$
\frac{d}{d\delta}(\lambda, u_z, p_z, t, z) = (-\frac{2\lambda}{z_b^2(t)-z^2}, \frac{u_z}{z}, -\frac{4p_z}{z_b^2(t)-z^2}, 0, 1).
$$

 \bigcup Invariants of the group transformation (in addition to \mathcal{L} :

$$
\lambda_b(t) = \frac{\lambda(t, z)}{\left(1 - \frac{z^2}{z_b^2(t)}\right)}, v_{zb}(t) = -\frac{v_z(t, z)}{z_b(t)},
$$

\n
$$
p_{zb}(t) = \frac{p_z(t, z)}{\left(1 - \frac{z^2}{z_b^2(t)}\right)^2}, v_{zb}(t) = -\frac{dz_b(t)}{dt}.
$$

\bigcup The \approx -dependencedrops out,

 \bigcup Remarkably, these equations recover the longitudinalenvelope equation:

$$
\frac{1}{N} \frac{d\lambda_b}{dt} + \frac{1}{z_b} \frac{d z_b}{dt} = 0 \implies z_b \lambda_b = const. = \frac{3}{4} N_b,
$$

$$
\frac{1}{p_{zb}} \frac{d p_{zb}}{dt} + \frac{3}{z_b} \frac{d z_b}{dt} = 0 \implies z_b^3 p_{zb} = const. = W,
$$

$$
\boxed{d^2 z_b} \qquad \qquad \kappa_z \qquad \qquad \kappa_z \qquad \qquad \frac{2}{K_l} \qquad \frac{2}{\varepsilon_l^2} \qquad \qquad \frac{2}{\varepsilon_l} \qquad \qquad \frac{2}{\varepsilon_l^2} \qquad \qquad \frac{2}{\varepsilon_l^2} \qquad \qquad \frac{2}{\varepsilon_l^2} \qquad \qquad \frac{2}{\varepsilon_l^2} \qquad \frac{2}{\v
$$

$$
\frac{d^2z_b}{ds^2}+\frac{\kappa_z}{m\gamma^3\beta^2c^2}z_b-\frac{K_l}{z_b^2}-\frac{\varepsilon_l^2}{z_b^3}=0\,,
$$

 \bigcirc K*l* ≡ ಲು $N_b\,$ $e^2g/$ $\mathcal C$ $m \gamma^5$ β^2 \mathcal{C} longitudinalself-field perveance. \bigcirc ε*l* ≡ \bigoplus \tilde{b}_b $W/m\gamma$ $\mathcal C$ دى β^2 \mathcal{C} $N_b)^{1/2}$ longitudinalemittance.

- \bigcup ε*l* = 1.0 × 10 ∣
ी m and K*z* = 2.88 \times 10 ∣
ी m **ب** corresponding to an average final current $\overline{}$ $I_f\rangle$ = 2254 A, \heartsuit *bf* = 0.268 m, and \mathcal{G} = 0.81.
- \bigcup An initial longitudinal focusing force is imposed for $\frac{3}{\lambda}$ 150 m so that the beam acquires a velocity tilt z *b* - \blacksquare − 0.0143 \mathfrak{z} s *b* = 150 m.

 \bigcup Drift compression for neutralized beams modelledby the 1D Vlasov eq.

 \bigcup The general solution is a function of two trivial invariants,

$$
f(t,z,v_z) = f(0, z - v_z t, v_z).
$$

 \bigcup structed using Courant-Snyder invariant \blacktriangleright class ofself-similar driftcompressionsolutions cana
a more easilycon-

$$
\chi = \frac{z^2}{\frac{z^2}{z_0^2(t)}} + \frac{z_0^2(t)}{z_0^2(t)} \left[v_z - z_0'(t)\frac{z}{z_0(t)}\right]^2,
$$

\n
$$
\frac{dz_b(t)}{dt^2} = \frac{z_{00}^2 v_{T0}^2}{z_0^2(t)}.
$$

\n
$$
z_0^2(t) = (z_{bo} + z_{bo}'t)^2 + v_{T0}^2t^2,
$$

where z *b* - 0 $=\left(d z_{b}/d t\right) _{t=0}$ and \overline{c} *T* 0 is an effective thermal speed.

 \bigcup Fo the class of distribution $f(\chi)$, the line density is

$$
\left[\lambda = \int dv_z f(\chi) = \frac{z_{b0}v_{T0}}{z_b(t)} \int dV f[Z^2 + (V - \alpha Z)^2],\right]
$$

where $\overline{\mathcal{L}}$ $\mathbb I$ $z/z_b(t)$, Δ \blacksquare z ^{*b*} $\left(\zeta_{b0}\right)$ \overline{c} *T* 0), and α 1 z *b* z *b* - / (z *b* 0 \mathcal{C} *T* 0).

 \bigcup $\lambda(t,z)$ has the self-similarform

$$
\begin{aligned}\n\lambda(t,z) &= \lambda_b(t)h(Z^2).\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\lambda(t,z) &= \frac{z_{b0}v_{T0}}{z_{b}(t)}f_{b0}, \ f_{b0} = \int dV f(V^2), \\
h(Z^2) &= \frac{1}{f_{b0}} \int dV f[Z^2 + (V - \alpha Z)^2],
$$

 \bigcup The velocityprofile is linear,

$$
u_z = \frac{1}{\lambda} \int dv_z \, v_z f(\chi) = -z'_b(t) Z.
$$

 \bigcup tion is For a given self-similar line density profile, the correspondingdistributionfunc-

$$
f(\chi) = -\frac{1}{\pi} \frac{\lambda_b(t) z_b(t)}{z_{b0} v_{T0}} \int_{\chi}^{\infty} \frac{\partial h(Z^2)}{\partial Z^2} \frac{dZ^2}{\sqrt{Z^2 - \chi}}.
$$

 \bigoplus For the family of self-similar line densityprofiles

$$
\lambda(t, z) = \lambda_b(t) h(Z^2) = \begin{cases} \lambda_b(t)(1 - Z^2)^n, Z \le 1, \\ 0, Z > 1, \\ \frac{1}{\sqrt{\pi}} \frac{\lambda_b(t)z_b(t)}{z_{b0}v_{T0}} (1 - \chi)^{n-1/2} \frac{\Gamma(n)}{\Gamma(n+1/2)}, \chi \le 1, \\ 0, \chi > 1. \end{cases}
$$

- \bigcirc $\mathcal U$ | ||
|and λ ∼ $\overline{}$ − Z^2 , the distribution function \int ∼ √ $\overline{}$ − χ when χ $\overline{\wedge}$.
.
.
- \bigcirc $\mathcal U$ = 1 \diagup \mathcal{C} and λ ∼ √ $\overline{}$ − Z^2, f is a flat-top function of χ.
- \bigcirc \lesssim $\overline{}$ \diagup $\mathcal{C}.$ the distribution function diverges near χ = 1.

 \bigcup Another family of self-similar line densityprofiles

$$
\lambda(t,z) = \lambda_b(t)h(Z^2) = \begin{cases} \lambda_b(t)(1-Z^{2n}), & Z \leq 1, \\ 0, & Z > 1. \end{cases}.
$$

$$
f(x) = \begin{cases} -\frac{1}{\pi} \frac{\lambda_b(t)z_b(t)}{z_{b0}v_{TO}} \left[\sqrt{\pi} n \chi^{2n-1/2} \frac{\Gamma(1/2-2n)}{\Gamma(1-2n)} \right] \\ +\frac{4n}{4n-1} F(\frac{1}{2}, \frac{1}{2} - 2n; \frac{3}{2} - 2n; \chi) \right], \quad \chi \le 1, \\ 0, \quad \chi > 1. \end{cases}
$$

$$
\Rightarrow F(\frac{1}{2}, \frac{1}{2} - 2n; \frac{3}{2} - 2n; \chi) - \text{hypergeometric function}.
$$

 \bigcup $\mathcal C$ $\mathcal{U}% _{M_{1},M_{2}}^{\alpha,\beta}(\mathbf{r},\mathbf{r},t):=\left(\mathcal{N}_{M_{1},M_{2}}^{\alpha,\beta}(\mathbf{r},\mathbf{r},t)\right) ^{\alpha,\beta}$ \forall $\overline{}$ −→ arbitrarily flat line densityprofiles.

- \bigcup pulse shape toa
a parabolic. The parabolic self-similar drift compression solution requires the initialbeam
- \bigcup tilt. Need to shape the beam pulse into a parabolic formbefore imposing a velocity
- \bigcup distribution Need to solve the pulse shaping problem in general — finding the initial velocity $V(z)$ ≡ v*z* \mathcal{L} $\overline{}$ $0, z)$ such that a given initial pulse shape Λ($\widehat{\mathscr{C}}$ ≡ $\lambda(t$ 1 $0, z)$ evolves into a given final pulse shape \blacktriangleright $T(z)$ ≡ $t)$ \blacksquare $T,z)$ at time $\overline{\mathcal{L}}$ $\mathsf I$ T.
- \bigcup Choose the following normalizedvariables:

$$
\overline{\overline{v}}_z = \frac{v_z}{\overline{\beta c}}, \ \overline{z} = \frac{z}{z_{b0}}, \ \overline{\lambda} = \frac{\lambda}{\lambda_{b0}}, \ \frac{\overline{t}}{\overline{t}} = \frac{t\overline{\beta c}}{z_{b0}},
$$

where z*b*0 is the initial beam half-length, and λ*b*0 is the initial beam line density at the beam center (z $\frac{1}{2}$ $\smash{\check{}}\!\!\!$

 \bigcup pressure effects and external focusing, are given $\overline{\mathsf{Q}}$ **in** thenormalized variables, theone-dimensional fluid equations,neglecting

$$
\frac{\partial \lambda}{\partial t} + \frac{\partial}{\partial z}(\lambda v_z) = 0 \text{ (continuity)},
$$

$$
\frac{\partial v_z}{\partial t} + v_z \frac{\partial v_z}{\partial z} + \overline{K}_l \frac{\partial \lambda}{\partial z} = 0 \text{ (momentum)},
$$

where K*l* ≡ λ*b*0 $e^2g/m\gamma^5$ β^2 \mathcal{C} is the normalizedlongitudinalperveance.

- \bigcup K*l* will be treated as a smallparameter.
- \bigcup To order lowest order,

Heavy Ion Fusion Virtual

National

 \bigcup Can solved by integrating along characteristics. On the characteristics

 \bigcup Because dv*z* $\langle \mathrm{d} t \rangle$ $\overline{}$ \bigcirc on C , the family of characteristics \mathcal{O} are straight lines in the (t,z) plan, which cana
a representedas

$$
U(z) := z = \xi + V(\xi)t,
$$

$$
V(\xi) = v_z(t=0,\xi).
$$

 \bigcup The solution for v*z* (t,z) canbe formally written as

where $\xi(t,z)$ is a function of $\overline{\mathcal{L}}$ and z.

 \bigcup From above equations, four useful identities can be derived, *i.e.*,

Heavy Ion Fusion Virtual

National

Laboratory

 \bigcup We alsohave

$$
\frac{d \ln \lambda}{dt} = \frac{-V'(\xi)}{1 + V'(\xi)t} \quad \text{on } C.
$$

 \bigcup Since γ is a constant on C , it can be integrated to give

$$
\ln \lambda = \ln \lambda (t = 0, \xi) + \int_0^t \frac{-V'(\xi)}{1 + V'(\xi)t} dt
$$

$$
= \ln \Lambda(\xi) + \ln[1 + V'(\xi)t],
$$

where Λ($\widehat{\mathscr{C}}$ ≡ $\chi(t$ $\overline{}$ $0, z)$ is the initial line density profile. The solution for $\lambda(t,z)$ $\mathbf{\Omega}$.

$$
\lambda(t,z) = \frac{\Lambda(\xi)}{1+V'(\xi)t}.
$$

$$
\text{Heavy Ion Fusion Virtual National Laboratory}\longrightarrow\boxed{\textcolor{blue}{\textbf{Step 1}}}
$$

 \bigcup For the pulse shaping problem, the final line density profile \blacktriangleright $T(z)$ ≡ $t)$ $\mathbb I$ $T, z)$ is specified. We thereforeobtain

which can be viewed as an ordinary differential equation for $V(\xi)$.

 \bigcup It can be simplified using the variable $U(\xi)$ defined $\overline{\mathsf{Q}}$

$$
\text{In terms of } U(\xi) \quad \text{and} \quad U(\xi) \equiv \xi + V(\xi)T \;.
$$

 \bigcup Finally, $U(\xi)$ is determined by solving the above equation for the given functional forms Λ $T(z)$ and Λ(z). $V(\xi)$ is simply related to $U(\xi)$ $\overline{\mathsf{Q}}$

Heavy Ion Fusion Virtual

National

 \bigcup Consider two examples with the following symmetries and boundary conditions,

$$
v_z(t, -z) = -v_z(t, z), \lambda(t, -z) = \lambda(t, z),
$$

$$
V(\xi = 0) = 0, U(\xi = 0) = 0.
$$

 \bigcup **Example 1—Pulse Shaping Without Compression:**

$$
\Lambda(z) = \begin{cases} 1 - z^m, & 0 \le z \le 1, \\ 0, & 1 < z, \\ \Lambda(-z), & z < 0, \\ (1 - z^n) \frac{m(n+1)}{n(m+1)}, & 0 \le z \le 1, \\ 0, & 1 < z, \\ \Lambda(-z), & z < 0. \end{cases}
$$

 \bigcup The equation for \varOmega can integrated to give

 \bigcup The parabolic self-similar drift compression solution corresponds to $\mathcal U$ 1 2. 5 this case, there are three solutions for U(ξ). The solution satisfying the right boundary conditionis

 \bigcup For large value of $\mathcal{U}% _{k}=\mathcal{U}_{k}^{k}$ \forall <u>ب</u>
ب Λ($\overline{\alpha}$ has a flat-top shape with a fast fall-off near the ends of thepulse.

 \bigcup Initial pulse shape Λ(\approx)=1 − \heartsuit —
ত and final pulse shape Λ *T* ($z) = (45$ \diagup 32)(1 − z^2 are plotted in (a). The initial velocity $V(z)$ isplotted in (b).

$$
\Lambda(z) = \begin{cases} 1 - z^m, & 0 \le z \le 1, \\ 0, & 1 < z, \\ \Lambda(-z), & z < 0, \\ 1 - (\alpha z)^n \frac{\alpha m(n+1)}{n(m+1)}, & 0 \le z \le \frac{1}{\alpha}, \\ 0, & \frac{1}{\alpha} < z, \\ \Lambda(-z), & z < 0, \end{cases}
$$

 \bigcup The equation for $\overline{\mathcal{U}}$ canbe integrated to give

$$
\begin{bmatrix} \alpha U(\xi) - \frac{(\alpha U(\xi))^{{n+1}}}{n+1} \frac{m(n+1)}{n(m+1)} = \xi - \frac{\xi^{m+1}}{m+1}, \\[1.5em] \alpha U(\xi = 1) = 1, \text{ and } V(\xi = 1) = \frac{(1/\alpha - 1)}{T}. \end{bmatrix}
$$

- \bigcup For the case of a beam being shaped but not compressed, α | $\overline{}$ and V (ξ \blacksquare \bigcup $= 0.$ When α > <u>ب</u>
ب the beam is simultaneously being shaped and compressed, and $\mathcal{V}(\xi)$ = 1) $\overline{\wedge}$ 0.
- \bigcup Initial pulse shape Λ(\approx)=1 − \approx <u>।</u>
ত and final pulse shape Λ *T* ($z)=(135$ \diagup 32)(1 − \mathbb{C} \approx are plotted in (a). The initial velocity $V(z)$ isplotted in (b).

 \bigcup We now carry out the analysis to O (K*l*). Let

$$
\begin{array}{rcl}\lambda(t,z)&=&\lambda_0(t,z)+\lambda_1(t,z)\,,\\ v_z(t,z)&=&v_{z0}(t,z)+v_{z1}(t,z)\,. \end{array}
$$

 \bigcup To O (K_l),

$$
\begin{pmatrix}\n\frac{d}{dt} \\
\frac{d}{dt}\n\end{pmatrix}_0 \lambda_1 = \frac{\partial \lambda_1}{\partial t} + v_{z0} \frac{\partial \lambda_1}{\partial z} = -\lambda_1 \frac{\partial v_{z0}}{\partial z} - \frac{\partial}{\partial z} (\lambda_0 v_{z1}),
$$
\n
$$
\begin{pmatrix}\n\frac{d}{dt} \\
\frac{d}{dt}\n\end{pmatrix}_0 v_{z1} = \frac{\partial v_{z1}}{\partial t} + v_{z0} \frac{\partial v_{z1}}{\partial z} = -v_{z1} \frac{\partial v_{z0}}{\partial z} - \overline{K_1 \frac{\partial \lambda_0}{\partial z}}.
$$

 \bigcup Using the method of variationalcoefficients, the solution is found tobe

$$
\log \frac{1}{1+V_0'(\xi)t}\left\{V_1(\xi)-\overline{K}_l\frac{\partial}{\partial\xi}\left[\frac{\Lambda_0(\xi)}{V_0'(\xi)}\ln[1+V_0'(\xi)t]\right]\right\}.
$$

 $\overline{}$

 \bigcup By the sameprocedure,

 \sum

$$
= \frac{\Lambda_1(\xi)}{1 + V_0'(\xi)t} - \frac{1}{1 + V_0'(\xi)t} \frac{1}{\delta\xi} \left(\frac{\Lambda_0(\xi)V_1(\xi)t}{1 + V_0'(\xi)t} \right)
$$

- $\frac{K_1\Lambda_0(\xi)}{K_1\Lambda_0(\xi)} \frac{\partial}{\partial\xi} \left[\frac{\Lambda_0(\xi)}{V_0'(\xi)} \frac{V_0'(\xi)t - \ln[1 + V_0'(\xi)t]}{t^2} \right]$
- $\frac{K_1\frac{\Lambda_0(\xi)}{V_0'(\xi)} V_0''(\xi)}{V_0'(\xi)} \left[\frac{1 + V_0'(\xi)t^2}{1 + V_0'(\xi)t^2} \right].$

 \bigcup At time $\overline{\mathcal{L}}$ \blacksquare T , we obtain

$$
\boxed{\Lambda_T(z) = \lambda_0(t = T, z) + \lambda_1(t = T, z)}.
$$

Since Λ $T(z)$ and Λ($\widehat{\mathscr{C}}$ are prescribed in the pulse shaping problem, we take Λ*T*1 $\widehat{\approx}$ $($ and Λ_1 $\widehat{\mathscr{Z}}$ $) = 0.$ Thisresults in

$$
V_1(\xi) = \overline{K}_1 \frac{\partial}{\partial \xi} \left[\frac{\Lambda_0(\xi)}{V_0'(\xi)} \right] \frac{V_0'(\xi) - \ln[1 + V_0'(\xi)T]/T}{1 + V_0'(\xi)T}
$$

+ $\overline{K}_1 \frac{\Lambda_0(\xi)}{V_0'(\xi)} V_0''(\xi) \frac{T}{1 + V_0'(\xi)T} + c'.$

- \bigcup dition need to be satisfied. To focus entire beam pulse onto the same focal, the self-similarsymmetry con-
- \bigcup line density. Self-similar drift compression scheme satisfies the symmetry conditionfor the
- \bigcup due to the complex dynamical behavior. It is difficult to guarantee the symmetry condition for the transverseemittance
- \bigcirc Longitudinalcompression
- \bigcirc Non-periodictransversefocusing lattice and final focus magnets.
- \bigcup However, in most heavy ion fusion systems, the transverseemittanceis small.
- \bigcup emittance can be treated as a perturbation. The deviation from the self-similar symmetrycondition due to the transverse
- \bigcup bation due to the un-symmetrictransverseemittance. Deliberately impose another perturbation to the system to cancel out thepertur-

- \bigcup scheme for a typical un-neutralized heavy ion fusion beam. Demonstrate this technique using the parabolic longitudinal drift compression
- \bigcup will be four time-dependent magnets. The perturbationintroduced to cancel out the un-symmetricemittanceeffect
- \bigcup \widehat{Z} First, a drift compression and final focus lattice is designed for the central slice $\overline{}$ 0), and then four quadrupole magnets at the beginning of the drift comaround the design value for the central pression are replaced by four time-dependent
around the design value for the central slice. magnets whose strengthvaries
- \bigcup lattice for the different slices. Thetime-dependent magnets essentially provide a slightly differentfocusing
- \bigcup Transverse envelope equations for every slice in a bunchedbeam,

$$
\frac{\partial^2 a(s, Z)}{\partial s^2} + \kappa_q a(s, Z) - \frac{2K(s, Z)}{a(s, Z) + b(s, Z)} - \frac{\varepsilon_x^2(s, Z)}{a(s, Z)^3} = 0,
$$

$$
\frac{\partial^2 a(s, Z)}{\partial s^2} - \kappa_q b(s, Z) - \frac{2K(s, Z)}{a(s, Z) + b(s, Z)} - \frac{\varepsilon_y^2(s, Z)}{b(s, Z)^3} = 0,
$$

- \bigcup $K(s,z)$ is non-periodic due to the longitudinalcompression.
- \bigcup κ *q* need to be non-periodic to reduce the expansion of the beamradius.
- \bigcup not well defined. Since the quadrupole lattice is not periodic, the concept of a "padotam" beam is
- \bigcup beam which, by definition, is locally matched everywhere. changes slowly along the beam path, we can seek an $\rm ``adiabatically'$ -matched $\rm ''$ However, if the thenon-periodicity is small, that is, if the quadrupolelattice

- \bigcup Goal:
- \bigcirc Constantvacuum phase advance σ*v* $\overline{}$ $\pi/$ $\mathbf C$ र −→ $H B$ \overline{T} , $\mathcal C$ \blacksquare const.
- \bigcirc Length z *b* −→ × 1 21.8 .Perveance \bm{X} −→ ×21.8.
- \bigcirc Beam radius $\mathcal{D}% _{M_{1},M_{2}}^{\alpha,\beta}$ −→ × 2.33.
- \bigcirc Half lattice period L −→ × ب | ب
2
- \bigcirc Filling factor $\mathcal{U}% _{A_{1},A_{2}}^{\ast }=\mathcal{U}_{A_{1},A_{2}}^{\ast }=\math$ −→ × 4. $\eta B'$ −→ × 4.
- \bigcup How do $K,$ $L, \eta,$ B', a , and $\mathcal Q$ depend on $\mathcal{C}^{\mathcal{D}}$ $\dot{}$
- \bigcirc $K(s)$ is given by the longitudinaldynamics.
- \bigcirc $L(s)$, $\eta(s)$, and $B'(s)$ are determined $\overline{\mathsf{Q}}$ requirements such as constant vacuumphase advance.
- \bigcirc $a(s)$ and $b(s)$ are determined by the transverseenvelope equations.

- \bigcup vance constant is less likely to induce beam mismatch. A lattice which keeps both the vacuum phase advance and depressedphase ad-
- \bigcup Vacuum phase advance σ*v* and depressed phase advance σ are given $\overline{\Delta \mathbf{q}}$

$$
2(1 - \cos \sigma_v) = (1 - \frac{2\eta}{3})\eta^2 \left(\frac{B'}{[B\rho]}\right)^2 L^4,
$$

$$
\sigma^2 = 2(1 - \cos \sigma_v) - K \left(\frac{2L}{\langle a\rangle}\right)^2.
$$

 \bigcup Assuming $\mathcal{U}% _{A\rightarrow B}^{(h,\sigma),(h,\sigma)}(-\varepsilon)$ $\hat{\wedge}$ <u>اب</u> we obtain

$$
\eta^2(\frac{B'}{[B\rho]})^2L^4=const.,\ K(\frac{2L}{\langle a\rangle})^2=const. ,
$$

for constantvacuum phase advance and constant depressedphase advance.

 \bigcup It is under-determined. As onepossible choice, let

$$
L = L_0 \exp(-\ln 2 \frac{s}{s_f}), \qquad \eta = \eta_0 \exp(2\ln 2 \frac{s}{s_f}), \qquad B' = const.
$$

 \bigcup Let the lattice lengths are $L_0,$ L_1 , ..., $\overline{\bm{\mathcal{I}}}$ *N* \blacksquare L *f* ,

$$
L_1 = L_0 \exp(-\ln 2 \frac{2L_0}{s_f}),
$$

\n
$$
L_2 = L_0 \exp(-\ln 2 \frac{2(L_0 + L_1)}{s_f}),
$$

.

$$
L_i = L_0 \exp(-\ln 2 \frac{2 \sum_{i=1}^{i-1} L_i}{s_f}),
$$

2(L₁ + L₂ + ... + L_N) = S_f.

 \bigcup For L *f* = 3.36m, L_0 ≤ 5.72 m, and \mathcal{C} *f* = 421.5m, calculation gives N $= 45.$

- \bigcup For an adiabatically-matchedsolution,
- \bigcirc local envelope oscillations. The envelope is locally matched and contains no oscillationsother than the
- \bigcirc On the global scale, the beam radius increasesmonotonically.

- \bigcup directions at the exit of the last focusing magnet. Four final focus quadrupole magnets assure that the envelope convergein
in both
- \bigcup is neutralized, and is focused onto a focal point at Then the beam enters the neutralization chamber where the space-chargeforce

 \bigcup s The transverse spot size isdetermined by the emittance and incident angle at \blacksquare s*f f* ,

 \bigcup For the central slice at \gtrsim 1 0, we obtain \heartsuit *f ol* 1 5.276 m, and \mathcal{Q} *f ol* = \boldsymbol{q} *f ol* \blacksquare 1.22 mm .

 \bigcup Other slices (Z = z/z *b* $\neq 0)$ should be focused onto the same focalpoint

$$
z_{fol} = 5 \,\mathrm{m}, \ a_{fol} \approx b_{fol} \lesssim 1.2 \,\mathrm{mm}.
$$

➱ For the $\lambda(s,z)$ = λ *b* ($\mathbf{\hat{c}}$)[1 − z 2 \Big/ z_0^2 $\overline{}$ $\mathfrak{c}_\mathfrak{o}$)], the self-similar symmetry condition imcentral slice: plies that the solution for all of the slices canbe scaled down from that of the

$$
\left(\begin{array}{c} a(s,z)\\ b(s,z)\\ b(s,z) \end{array}\right) = \sqrt{1-z^2/z_0^2(s)} \left(\begin{array}{c} a(s,0)\\ b(s,0)/\partial s\\ \partial a(s,z)/\partial s\\ \partial b(s,z)/\partial s \end{array}\right),
$$

if the emittanceis

- \bigcirc negligibly small or
- ❍ scales with the perveance according to $\left(\begin{smallmatrix} \mathcal{E}_x, & \mathcal{E}_y \end{smallmatrix}\right)$ ∝ $\overline{}$ − z 2 \Big/ z_0^2 (s).

- \bigcup with the perveance However, the emittance in general is small but not negligible, and does not scale .
- \bigcup size, i.e., In fact, during adiabatic drift compression, the emittance scales with the beam ε *x* ∝ \mathcal{Q} and $\mathscr{C}_{\mathfrak{Y}}$ ∝ \mathcal{P}
- \bigcup Self-similar symmetry condition can'tbe satisfied.
- \bigcup for different value of Vary the strength of four magnets in the very beginning of the drift compression $\overline{\mathcal{S}}$ such that the self-similar symmetry holds at S \blacksquare s*f f* .
- \bigcup a 4D root-searching algorithm. Numerically, the necessaryvariation of the strength of the magnets is found $\overline{\text{Vol}}$
- \bigcup mismatch in such a way that the self-similar symmetry is satisfied at A small perturbation in the strength of the magnets introduces a small envelope s \blacksquare s*f f* .

- \bigcup systems were considered. Two of the most important requirements of the drift compressionand final focus
- \bigcirc A large compression ratio needs to be achieved.
- \bigcirc target. The entire beam pulse needs tobe focused onto the same focal spot at the
- \bigcup It is necessary Ω use a self-similar drift compressionscheme.
- ❍ pression solutions. thewarm-fluid model tosystematically derive theself-similar drift com-For un-neutralizedbeams, the Lie symmetry group analysis was applied to
- \bigcirc families of self-similar drift compressionsolutions were constructed. For neutralized beams, the 1D Vlasov equation wassolved explicitly and
- \bigcup the transverse size of the beam. \blacktriangleright non-periodic lattice has been designed so that it ispossible to actively control

- \bigcup beam pulse can be focused onto the the same focal spot. time-dependent magnets wereintroduced in the upstream such that the entire To compensate for the deviation from the self-similarsymmetry condition, four
- \overline{u} order drift compression method. periodic, time-dependent lattice design, provide the essential elements of a leading-The self-similarlongitudinal drift compression scheme, combinedwith the non-
- \bigcup the longitudinal and transverse dynamics. emittance growth during drift compression, and the two-way coupling between The next-stepinvestigation will be focused onsecond-order effects, suchas

