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M
otivation

➱
In

the
currently

envisioned
configurations

for
heavy

ion
fusion

(H
IF),itis

nec-
essary

to
longitudinally

com
press

the
beam

bunches
by

a
large

factor
after

the
acceleration

phase
and

before
the

beam
particles

are
focused

onto
the

fusion
target.

❍
In

order
to

obtain
enough

fusion
energy

gain,
the

peak
current

for
each

beam
is

required
to

be
order

10
3A

,
and

the
bunch

length
to

be
as

short
as

0.5m
.

❍
To

deliver
the

beam
particles

atthe
required

energy,itis
both

expensive
and

technically
difficultto

accelerate
shortbunches

athigh
current.

➱
T

he
objective

of
driftcom

pression
is

to
com

press
a

long
beam

bunch
by

im
pos-

ing
a

negative
longitudinalvelocity

tiltover
the

length
of

the
beam

in
the

beam
fram

e.

H
eavy

Ion
F

usion
V

irtualN
ationalL

aboratory



D
rift

C
om

pression
and

F
inalF

ocus
of

H
eavy

Ion
B

eam

➱
A

ssum
e

a
C

s
+

beam
for

H
IF

driver
w

ith
A

=
132.9,

q
=

1,
(γ−

1)m
c
2

=
2.43G

eV
,

z
bf

=
0.27m

,and
<

I
>

=
2254A

.

➱
T

he
goalof

driftcom
pression

is:

❍
L

ength
z

b −→
×

1

21.8
.Perveance

K
−→

×
21.8.

➱
A

llow
able

changes
of

other
system

param
eters:

❍
V

elocity
tilt|v

z
b |−→

≤
0.01.

❍
B

eam
radius

a−→
×

2.33.

❍
H

alf
lattice

period
L
−→

×
12

.

❍
Filling

factor
η−→

×
4.

η
B

′−→
×

4.

➱
T

he
beam

pulse
need

to
focused

onto
a

targetw
ith

2m
m

characterisitic
size.

H
eavy

Ion
F

usion
V

irtualN
ationalL

aboratory



O
ther

P
resentations

at
H

IF
04

➱
Finalfocus

❍
T

h.I-07
J.B

arnard
(L

L
N

L
-

U
SA

)

➱
N

eturalized
finalfocus

❍
W

.P-13
P.E

fthim
ion

(PPPL
-U

SA
)

❍
W

.P-20
J.H

asegaw
a

(T
iTech-Japan)

❍
T

h.I-05
P.R

oy
(L

B
N

L
-

U
SA

)

❍
T

h.I-06
D

.W
elch

(M
ission

R
esearch

C
orp

-
U

SA
)

➱
D

riftcom
pression

❍
W

.P-19
W

.Sharp
(L

L
N

L
-U

SA
)

❍
W

.P-17
T

.K
ikuchi(U

niv.
of

Tokyo
-

Japan)

❍
T

h.I-09
T

.K
ikuchi(U

niv.
of

Tokyo
-

Japan)



Im
portant

Q
uestions

➱
L

ongitudinalD
ynam

ics.
W

hatis
the

dynam
ics

of
z
b (s)?

❍
H

ow
long

is
the

beam
line?

(s
f

=
516m

)

❍
H

ow
large

initialvelocity
tiltcan

w
e

afford?
(v

z
b0

=
−

0.0143)

❍
Stability?

➱
T

ransverse
D

ynam
ics

and
Final

Focus.
H

ow
to

focus
the

entire
beam

onto
the

target?

❍
N

on-periodic
lattice

design,
L

(s),
B

′(s),
η
(s),

κ
(s),

K
(s).

❍
N

on-periodic
envelope,

m
atched

solutions?
adiabatically-m

atched
solu-

tions?H
eavy

Ion
F

usion
V

irtualN
ationalL

aboratory



O
utline

➱
Self-sim

ilar
sym

m
etry

if
required

for
focusing

the
entire

beam
pulse.

➱
L

ongitudinalD
ynam

ics.

❍
Self-sim

ilar
solutions

for
un-neutralized

beam
s.

❍
Self-sim

ilar
solutions

for
neutralized

beam
s.

❍
Pulse

shaping

➱
T

ransverse
D

ynam
ics

and
FinalFocus.

❍
N

on-periodic
lattice

and
adiabatically-m

atched
beam

s.

❍
T

im
e-dependentlattice

for
deviation

from
self-sim

ilar
sym

m
etry.

H
eavy

Ion
F

usion
V

irtualN
ationalL

aboratory



N
eed

Self-Sim
ilar

Sym
m

etry
To

F
ocus

the
E

ntire
B

eam
P

ulse

➱
T

ransverse
envelope

equations
for

every
slice

in
a

bunched
beam

,

∂
2a

(s,Z
)

∂
s
2

+
κ

q (s)a
(s,Z

)−
2K

(s,Z
)

a
(s,Z

)
+

b(s,Z
) −

ε
2x (s,Z

)

a
(s,Z

)
3

=
0,

∂
2b(s,Z

)

∂
s
2

−
κ

q (s)b(s,Z
)−

2K
(s,Z

)

a
(s,Z

)
+

b(s,Z
) −

ε
2y (s,Z

)

b(s,Z
)
3

=
0,

❍
K

(s,Z
)≡

2e
2λ

(s,Z
)/m

γ
3β

2c
2

—
effective

perveance
of

slice
Z

.

❍
Z

—
longitudinalcoordinate

for
differentslices.

❍
K

(s,Z
)

and
λ
(s,Z

)
are

determ
ined

by
the

longitudinaldynam
ics.

➱
A

lattice
design

for
one

slice
m

ay
notbe

able
to

transversely
confine

other
beam

slices
and

focus
them

onto
the

sam
e

focalspotatthe
target.

➱
M

ostof
the

other
slices

cannotbe
focused

atalldue
to

the
m

ism
atch

induced
by

the
different

s-dependences
of

the
currentand

em
ittance.

➱
A

fixed
driftcom

pression
and

finalfocus
lattice

w
illbe

able
to

focus
the

entire
beam

pulse
onto

the
sam

e
focalspotonly

if
the

currentand
em

ittance
of

allthe
slices

depend
on

s
in

the
sam

e
m

anner.



N
eed

Self-Sim
ilar

Sym
m

etry
To

F
ocus

the
E

ntire
B

eam
P

ulse

➱
a
,
b,

λ
,
ε

x ,and
ε

y
for

different
Z

are
generated

by
the

sam
e

solution
through

a
one-param

eter
group

transform
ation

adm
itted

by
the

envelope
equations


a

[s,Z
(δ

=
0)]

b
[s,Z

(δ
=

0)]
λ

[s,Z
(δ

=
0)]

ε
x
[s,Z

(δ
=

0)]
ε

y
[s,Z

(δ
=

0)] 
−→ 

a
[s,Z

(δ)]
b
[s,Z

(δ)]
λ

[s,Z
(δ)]

ε
x
[s,Z

(δ)]
ε

y
[s,Z

(δ)] 
.

➱
It

is
easy

to
check

that
the

follow
ing

scaling
group

is
a

sym
m

etry
group

of
the

envelope
equations.


a

[s,Z
(δ)]

b
[s,Z

(δ)]
λ

[s,Z
(δ)]

ε
x
[s,Z

(δ)]
ε

y
[s,Z

(δ)] 
= 

δa
[s,Z

(δ
=

0)]
δb

[s,Z
(δ

=
0)]

δ
2λ

[s,Z
(δ

=
0)]

δ
2ε

x
[s,Z

(δ
=

0)]
δ
2ε

y
[s,Z

(δ
=

0)] 



N
eed

Self-Sim
ilar

Sym
m

etry
To

F
ocus

the
E

ntire
B

eam
P

ulse

➱
O

btain
a

fam
ily

of
m

atched
and

focused
solutions

for
different

slices
from

that
of

one
slice.

➱
Itis

called
self-sim

ilarsym
m

etry
because

every
field

quantity
fordifferentslices

has
the

sam
e

s-dependence.

➱
T

he
ratio

of
line

density
betw

een
differentslices

is
s

independent,

λ
[s,Z

(δ ′)]
λ

[s,Z
(δ)]

= (
δ ′δ )

2

.

➱
B

ecause
s

is
conserved

by
the

group
transform

ation,the
s-dependence

and
the

Z
-dependence

of
λ
(s,Z

)
are

separable

λ
(s,Z

)
=

λ
b (s)h

(Z
)
.

➱
L

ine
density

during
driftcom

pression
is

determ
ined

by
the

longitudinaldynam
-

ics.
N

eed
to

find
self-sim

ilar
drift

com
pression

solutions
in

the
longitudinal

direction.

➱
T

he
functions

λ
b (s)

and
h
(Z

)
w

illbe
determ

ined
from

the
sym

m
etry

groups
of

the
governing

equations
for

the
longitudinaldynam

ics.



L
ongitudinalD

ynam
ics

–
1D

fluid
m

odel

➱
O

ne
dim

ensionalfluid
m

odelin
the

beam
fram

e
for

❍
λ
(t,z):

line
density,

❍
u

z (t,z):
longitudinalvelocity,

❍
p

z (t,z):
longitudinalpressure.

➱
g-factor

m
odelfor

electric
field

[D
avidson

&
Startsev,P

R
ST

A
B

2004].

eE
z

=
−

g
e
2

γ
2

∂
λ

∂
z
,

g
=

2
ln

r
wr
b

.

➱
Take

g
and

r
b

as
constants

for
presentpurpose.

➱
E

xternalfocusing:−
κ

z z.

H
eavy

Ion
F

usion
V

irtualN
ationalL

aboratory



L
ongitudinalD

ynam
ics

–
1D

fluid
m

odel

➱
In

the
beam

fram
e:

∂
λ∂
t

+
∂∂
z
(λ

u
z )

=
0

(continuity),

∂
u

z

∂
t

+
u

z ∂
u

z

∂
z

+
e
2g

m
γ

5

∂
λ

∂
z

+
κ

z z

m
γ

3
+

r
2b

m
γ

3λ

∂
p

z

∂
z

=
0

(m
om

entum
),

∂
p

z

∂
t

+
u

z ∂
p

z

∂
z

+
3p

z ∂
u

z

∂
z

=
0

(energy).

➱
N

onlinear
hyperbolic

PD
E

system

➱
T

he
energy

equation
is

equivalentto

dd
t (

p
z

λ
3 )

=
0.



L
ie

G
roup

Sym
m

etry
A

nalysis

➱
T

he
system

atic
m

ethod
for

finding
sim

ilarity
solutions

(group-invariant
solu-

tions)
for

PD
E

s
is

the
L

ie
group

sym
m

etry
analysis.

➱
Tw

o
types

of
pointsym

m
etries

can
be

used.

❍
C

lassicalpoint
sym

m
etry,w

hich
transfers

a
solution

of
the

PD
E

s
into

an-
other

solution.

❍
N

on-classicalpoint
sym

m
etry,under

w
hich

a
solution

is
invariant.

➱
T

he
sym

m
etry

groups
of

both
types

are
determ

ined
by

the
corresponding

in-
finitesim

algenerators.

❍
C

lassical
point

sym
m

etry:
linear

and
algorithm

ically
solvable

dertm
ining

equations.
Infinitesim

algenerators
form

a
L

ie
algebra.

❍
N

on-classical
pointsym

m
etry:

nonlinear
and

non-algorithm
ically-solvable

dertm
ining

equations.
N

o
infinitesim

alL
ie

algebra.

➱
O

nce
pointsym

m
tries

are
found,sim

ilarity
solutions

can
be

derived
straightfor-

w
ardly.



3D
L

ie
A

lgebra
for

Self-Sim
ilar

Sym
m

etry

➱
T

he
infinitesim

al
generators

of
the

classical
point

sym
m

etry
for

the
nonlinear

PD
E

system
are

found
to

be
a

4D
L

ie
algebra

d
λd
δ

=
2k

2 λ
,

d
u

z

d
δ

=
k

2 u
z
+

k
4
cos(t √

κ
)
+

k
3
sin

(t √
κ
)
,

d
p

z

d
δ

=
4k

2 p
z
,

d
zd
δ

=
k

2 z−
k

3
cos(t √

κ
)/ √

κ
+

k
4
sin

(t √
κ
)/ √

κ
,

d
t

d
δ

=
k

1
.

➱
For

every
set

of
k

i ,
the

PD
E

system
reduces

to
an

O
D

E
system

,
and

there
is

a
sim

ilarity
solution.

➱
Self-sim

ilar
sym

m
etry−→

t
is

an
invariantof

the
sym

m
etry

group
transform

a-
tion−→

k
1

=
0.

➱
Self-sim

ilar
solutions

by
the

classicalpointsym
m

etry
form

a
3D

vector
space.



A
n

E
xam

ple

➱
(k

1 ,k
2 ,k

3 ,k
4 )

=
(0,0,sin

α
,cos

α
)
.

T
he

reduced
O

D
E

system
can

be
easily

integrated,

λ
(t,z)

=
λ

0
cos

α

cos(α
+

t √
κ
)

,

u
z (t,z)

=
−

z
z ′b (t)

z
b (t)

=
−

z √
κ

tan
(α

+
t √

κ
)
,

p
z (t,z)

=
p

z
0

cos
3
α

cos
3(α

+
t √

κ
)

,

z
b (t)

=
z

b0 cos(α
+

t √
κ
)

cos
α

.

➱
M

axim
um

com
pression

ratio
is

λ
f

λ
0

=
cos

α

cos(α
+

t
f √

κ
) .

➱
C

hoose
appropriate

values
for

κ
,

α
,

and
tf

for
required

com
pression

ratio
and

m
axim

um
velocity

tilt.



N
onclassicalP

oint
Sym

m
etries

➱
For

the
non-classicalpointsym

m
etry

group,the
determ

ining
equations

are
non-

linear
and

difficultto
solve

for
generalsolutions.

➱
C

ase
(1).

Infinitesim
algenerator

dd
δ
(λ

,u
z ,p

z ,t,z)
=

(0,
u

zz
,0,0,1)

.

❍
D

ensity
—

flattop.

❍
Pressure

—
flattop.

❍
V

elocity
tilt—

linear.

❍
Self-sim

ilar
solution

—
the

sam
e

as
the

previous
exam

ple.

H
eavy

Ion
F

usion
V

irtualN
ationalL

aboratory



N
onclassicalP

oint
Sym

m
etries

➱
C

ase
(2).

Infinitesim
algenerator

dd
δ
(λ

,u
z ,p

z ,t,z)
=

(0,
u

zz
,
2p

z

z
,0,1).

➱
Invariants

of
the

group
transform

ation
(in

addition
to

t)
:

λ
(t,z)

=
λ

b (t),
v

z
b (t)

=
−

v
z (t,z)

z
z
b (t)

,

p
z
b (t)

=
p

z (t,z)
z
2

z
2b
(t)

,
v

z
b (t)

=
−

d
z

b (t)

d
t

.



N
onclassicalP

oint
Sym

m
etries

➱
T

he
z-dependence

drops
out,

z
b λ

b
=

con
st.

=
N

b /2
,

z
3b p

z
b

=
con

st.
=

W
.

d
2z

b

d
s
2

+
κ

z

m
γ

3β
2c

2 z
b
+

ε
2l

z
3b

=
0
,

v
z

p
z

z
z
t

b (
)

v
t

zb (
)

p
t

zb (
)

λ

t
b (

)
λ

z
z
t
b (

)

z

z
t

b (
)



N
onclassicalP

oint
Sym

m
etries

—
P

arabolic
Self-Sim

ilar

➱
C

ase
(3).

Infinitesim
algenerator

dd
δ
(λ

,u
z ,p

z ,t,z)
=

(−
2λ

z
2b (t)−

z
2 ,

u
zz
,−

4p
z

z
2b (t)−

z
2 ,0,1).

➱
Invariants

of
the

group
transform

ation
(in

addition
to

t)
:

λ
b (t)

=
λ
(t,z)

(
1−

z
2

z
2b
(t) )

,v
z
b (t)

=
−

v
z (t,z)

z
z
b (t)

,

p
z
b (t)

=
p

z (t,z)
(
1−

z
2

z
2b
(t) )

2
,
v

z
b (t)

=
−

d
z

b (t)

d
t

.



N
onclassicalP

oint
Sym

m
etries

—
P

arabolic
Self-Sim

ilar

➱
T

he
z-dependence

drops
out,

d
λ

b

d
t
−

v
z
b

z
b

λ
b

=
0,

d
p

z
b

d
t

−
3
v

z
b

z
b

p
z
b

=
0.

−
d
v

z
b

d
t

−
e
2g

m
γ

5

2λ
b

z
b

+
κ

z z
b

m
γ

3 −
4r

2b p
z
b

m
γ

3λ
b z

b

=
0

.

v
z

p
z

z
z
t

b (
)

v
t

zb (
)

p
t

zb (
)

λ

t
b (

)
λ

z
z
t
b (

)

z

z
t
b (

)



N
onclassicalP

oint
Sym

m
etries

—
P

arabolic
Self-Sim

ilar

➱
R

em
arkably,these

equations
recover

the
longitudinalenvelope

equation:

1λ
b

d
λ

b

d
t

+
1z
b

d
z

b

d
t

=
0

=⇒
z

b λ
b
=

con
st.

=
34
N

b
,

1p
z
b

d
p

z
b

d
t

+
3z
b

d
z

b

d
t

=
0

=⇒
z

3b p
z
b
=

con
st.

=
W

,

d
2z

b

d
s
2

+
κ

z

m
γ

3β
2c

2 z
b −

K
l

z
2b −

ε
2l

z
3b

=
0

,

❍
K

l ≡
3N

b e
2g

/2m
γ

5β
2c

2
—

longitudinalself-field
perveance.

❍
ε

l ≡
(4r

2b W
/m

γ
3β

2c
2N

b )
1
/
2

—
longitudinalem

ittance.



N
onclassicalP

oint
Sym

m
etries

—
P

arabolic
Self-Sim

ilar

➱
ε

l
=

1.0×
10 −

5
m

and
K

z
=

2.88×
10 −

5
m

,corresponding
to

an
average

final
current〈I

f 〉
=

2254
A

,
z

bf
=

0.268
m

,and
g

=
0.81.

➱
A

n
initiallongitudinalfocusing

force
is

im
posed

for
s

<
150

m
so

thatthe
beam

acquires
a

velocity
tilt

z ′b
=

−
0.0143

at
s

b
=

150
m

.
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Self-Sim
ilar

D
rift

C
om

pression
for

N
eutralized

B
eam

s

➱
D

riftcom
pression

for
neutralized

beam
s

m
odelled

by
the

1D
V

lasov
eq.

∂
f∂
t

+
v

z
∂
f

∂
z

=
0

.

➱
T

he
generalsolution

is
a

function
of

tw
o

trivialinvariants,

f
(t,z,v

z )
=

f
(0,z−

v
z t,v

z )
.

➱
A

class
of

self-sim
ilar

drift
com

pression
solutions

can
be

m
ore

easily
con-

structed
using

C
ourant-Snyder

invariant

χ
=

z
2

z
2b (t)

+
z

2b (t)

z
2b0 v

2T
0 [

v
z −

z ′b (t)
z

z
b (t) ]

2

,

d
2z

b (t)

d
t
2

=
z

2b0 v
2T

0

z
2b (t)

.

z
2b (t)

=
(z

bo
+

z ′b0 t)
2
+

v
2T

0 t
2
,

w
here

z ′b0
=

(d
z

b /d
t)

t=
0

and
v

T
0

is
an

effective
therm

alspeed.



Self-Sim
ilar

D
rift

C
om

pression
for

N
eutralized

B
eam

s

➱
Fo

the
class

of
distribution

f
(χ

),the
line

density
is

λ
= ∫

d
v

z
f
(χ

)
=

z
b0 v

T
0

z
b (t) ∫

d
V

f [Z
2
+

(V
−

α
Z

)
2 ]

,

w
here

Z
=

z/z
b (t),

V
=

z
b v

z /(z
b0 v

T
0 ),and

α
=

z
b z ′b /(z

b0 v
T

0 ).

➱
λ
(t,z)

has
the

self-sim
ilar

form

λ
(t,z)

=
λ

b (t)h
(Z

2)
.

λ
b (t)

=
z

b0 v
T

0

z
b (t)

f
b0

,
f

b0
= ∫

d
V

f
(V

2)
,

h
(Z

2)
=

1f
b0 ∫

d
V

f [Z
2
+

(V
−

α
Z

)
2 ]

,

➱
T

he
velocity

profile
is

linear,

u
z

=
1λ ∫

d
v

z
v

z f
(χ

)
=

−
z ′b (t)Z

.



D
ensity

Inversion
T

heorem

➱
For

a
given

self-sim
ilar

line
density

profile,the
corresponding

distribution
func-

tion
is

f
(χ

)
=

−
1π

λ
b (t)z

b (t)

z
b0 v

T
0 ∫

∞χ

∂
h
(Z

2)

∂
Z

2

dZ
2

√
Z

2−
χ

.

➱
For

the
fam

ily
of

self-sim
ilar

line
density

profiles

λ
(t,z)

=
λ

b (t)h
(Z

2)
= {

λ
b (t)(1−

Z
2)

n,
Z

≤
1,

0,
Z

>
1

.
,

f
(χ

)
=

{
−

1
√

π
λ

b (t)z
b (t)

z
b
0
v

T
0

(1−
χ
)
n−

1
/
2

Γ
(n

)
Γ
(n

+
1
/
2
) ,

χ
≤

1,

0,
χ

>
1

.

❍
n

=
1

and
λ∼

1−
Z

2,the
distribution

function
f∼

√
1−

χ
w

hen
χ
≤

1.

❍
n

=
1/2

and
λ∼

√
1−

Z
2,

f
is

a
flat-top

function
of

χ
.

❍
n

<
1/2,the

distribution
function

diverges
near

χ
=

1.



D
ensity

Inversion
T

heorem

➱
A

nother
fam

ily
of

self-sim
ilar

line
density

profiles

λ
(t,z)

=
λ

b (t)h
(Z

2)
= {

λ
b (t)(1−

Z
2
n),

Z
≤

1,
0,

Z
>

1
.

.

f
(χ

)
= 

−
1π

λ
b (t)z

b (t)
z
b
0
v

T
0 [√

π
n
χ

2
n−

1
/
2

Γ
(1

/
2−

2
n
)

Γ
(1−

2
n
)

+
4
n

4
n−

1 F
(

12 ,
12 −

2n
;

32 −
2n

;χ
) ]

,
χ
≤

1,

0,
χ

>
1

.

➱
F

(
12 ,

12 −
2n

;
32 −

2n
;χ

)
—

hypergeom
etric

function.

➱
2n	

1−→
arbitrarily

flatline
density

profiles.

H
eavy

Ion
F

usion
V

irtualN
ationalL

aboratory



L
ongitudinalP

ulse
Shaping

➱
T

he
parabolic

self-sim
ilar

drift
com

pression
solution

requires
the

initial
beam

pulse
shape

to
be

parabolic.

➱
N

eed
to

shape
the

beam
pulse

into
a

parabolic
form

before
im

posing
a

velocity
tilt.

➱
N

eed
to

solve
the

pulse
shaping

problem
in

general—
finding

the
initialvelocity

distribution
V

(z)≡
v

z (t
=

0,z)
such

that
a

given
initial

pulse
shape

Λ
(z)≡

λ
(t

=
0,z)

evolves
into

a
given

finalpulse
shape

Λ
T
(z)≡

λ
(t

=
T
,z)

attim
e

t
=

T
.

➱
C

hoose
the

follow
ing

norm
alized

variables:

v
z

=
v

z

β
c
,

z
=

zz
b0 ,

λ
=

λλ
b0 ,

t
=

tβ
c

z
b0

,

w
here

z
b0

is
the

initialbeam
half-length,and

λ
b0

is
the

initialbeam
line

density
atthe

beam
center

(z
=

0).

H
eavy

Ion
F

usion
V

irtualN
ationalL

aboratory



L
ongitudinalP

ulse
Shaping

➱
In

the
norm

alized
variables,

the
one-dim

ensional
fluid

equations,
neglecting

pressure
effects

and
externalfocusing,are

given
by

∂
λ∂
t

+
∂∂
z
(λ

v
z )

=
0

(continuity),

∂
v

z

∂
t

+
v

z ∂
v

z

∂
z

+
K

l ∂
λ

∂
z

=
0

(m
om

entum
),

w
here

K
l ≡

λ
b0 e

2g
/m

γ
5β

2c
2

is
the

norm
alized

longitudinalperveance.

➱
K

l w
illbe

treated
as

a
sm

allparam
eter.

➱
To

order
low

estorder,

∂
λ∂
t

+
∂∂
z
(λ

v
z )

=
0

,

∂
v

z

∂
t

+
v

z ∂
v

z

∂
z

=
0

.

H
eavy

Ion
F

usion
V

irtualN
ationalL

aboratory



L
ongitudinalP

ulse
Shaping

➱
C

an
solved

by
integrating

along
characteristics.

O
n

the
characteristics

C
:

d
zd
t

=
v

z
,

d
λd
t

=
−

λ
∂
v

z

∂
z

,

d
v

z

d
t

=
0

.

➱
B

ecause
d
v

z /d
t

=
0

on
C

,
the

fam
ily

of
characteristics

C
are

straight
lines

in
the

(t,z)
plan,w

hich
can

be
represented

as

C
:

z
=

ξ
+

V
(ξ)t

,

V
(ξ)

≡
v

z (t
=

0,ξ)
.

H
eavy

Ion
F

usion
V

irtualN
ationalL

aboratory



L
ongitudinalP

ulse
Shaping

➱
T

he
solution

for
v

z (t,z)
can

be
form

ally
w

ritten
as

v
z (t,z)

=
V

(ξ(t,z))
,

w
here

ξ(t,z)
is

a
function

of
t

and
z.

➱
From

above
equations,four

usefulidentities
can

be
derived,i.e.,

∂
ξ

∂
z

=
1

1
+

V
′(ξ)t

,

∂
ξ

∂
t

=
−

V
(ξ)

1
+

V
′(ξ)t

,

∂
v

z

∂
z

=
V

′(ξ)
1

+
V

′(ξ)t
,

∂
v

z

∂
t

=
−

V
(ξ)V

′(ξ)
1

+
V

′(ξ)t
.

H
eavy

Ion
F

usion
V

irtualN
ationalL

aboratory



L
ongitudinalP

ulse
Shaping

➱
W

e
also

have

d
ln

λ

d
t

=
−

V
′(ξ)

1
+

V
′(ξ)t

on
C

.

➱
Since

ξ
is

a
constanton

C
,itcan

be
integrated

to
give

ln
λ

=
ln

λ
(t

=
0,ξ)

+ ∫
t

0

−
V

′(ξ)
1

+
V

′(ξ)t d
t

=
ln

Λ
(ξ)

+
ln

[1
+

V
′(ξ)t],

w
here

Λ
(z)≡

λ
(t

=
0,z)

is
the

initial
line

density
profile.

T
he

solution
for

λ
(t,z)

is

λ
(t,z)

=
Λ

(ξ)

1
+

V
′(ξ)t

.

H
eavy

Ion
F

usion
V

irtualN
ationalL

aboratory



L
ongitudinalP

ulse
Shaping

➱
Forthe

pulse
shaping

problem
,the

finalline
density

profile
Λ

T
(z)≡

λ
(t

=
T
,z)

is
specified.

W
e

therefore
obtain

Λ
T
(z)

=
Λ

T
[ξ

+
V

(ξ)T
]
=

Λ
(ξ)

1
+

V
′(ξ)T

,

w
hich

can
be

view
ed

as
an

ordinary
differentialequation

for
V

(ξ)
.

➱
Itcan

be
sim

plified
using

the
variable

U
(ξ)

defined
by

U
(ξ)

≡
ξ

+
V

(ξ)T
.

In
term

s
of

U
(ξ),

Λ
T
(U

)d
U

=
Λ

(ξ)d
ξ
.

➱
Finally,

U
(ξ)

is
determ

ined
by

solving
the

above
equation

for
the

given
func-

tionalform
s
Λ

T
(z)

and
Λ

(z).
V

(ξ)
is

sim
ply

related
to

U
(ξ)

by

V
(ξ)

=
U

(ξ)−
ξ

T
.

H
eavy

Ion
F

usion
V

irtualN
ationalL

aboratory



E
xam

ple:
P

ulse
Shaping

w
ithout

C
om

pression

➱
C

onsidertw
o

exam
ples

w
ith

the
follow

ing
sym

m
etries

and
boundary

conditions,

v
z (t,−

z)
=

−
v

z (t,z)
,
λ
(t,−

z)
=

λ
(t,z)

,

V
(ξ

=
0)

=
0
,
U

(ξ
=

0)
=

0
.

➱
E

xam
ple

1—
P

ulse
Shaping

W
ithout

C
om

pression:

Λ
(z)

=


1−

z
m

,
0≤

z≤
1
,

0
,

1
<

z
,

Λ
(−

z)
,

z
<

0
,

Λ
T
(z)

=


(1−

z
n) m

(n
+

1)

n
(m

+
1)

,
0≤

z≤
1
,

0
,

1
<

z
,

Λ
(−

z)
,

z
<

0
.

H
eavy

Ion
F
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V

irtualN
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E
xam

ple:
P

ulse
Shaping

w
ithout

C
om

pression

➱
T

he
equation

for
U

can
integrated

to
give

[
U

(ξ)−
U

(ξ)
n
+

1

n
+

1 ]
m

(n
+

1)

n
(m

+
1)

=
ξ−

ξ
m

+
1

m
+

1
.

➱
T

he
parabolic

self-sim
ilar

drift
com

pression
solution

corresponds
to

n
=

2.
In

this
case,

there
are

three
solutions

for
U

(ξ).
T

he
solution

satisfying
the

right
boundary

condition
isU

(ξ)
=

−
1−

i √
3

+
3 √−

2p
2

3 √
4p

,

p
=

3 √
−

3a
+
√−

4
+

9a
2

,

a
=

2(m
+

1)

3m
(ξ−

ξ
m

+
1

m
+

1
)

.

➱
For

large
value

of
m

	
1,

Λ
(z)

has
a

flat-top
shape

w
ith

a
fastfall-off

near
the

ends
of

the
pulse.

H
eavy

Ion
F

usion
V

irtualN
ationalL
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E
xam

ple:
P

ulse
Shaping

w
ithout

C
om

pression

➱
Initialpulse

shape
Λ

(z)
=

1−
z

1
5

and
finalpulse

shape
Λ

T
(z)

=
(45/32)(1−

z
2)

are
plotted

in
(a).

T
he

initialvelocity
V

(z)
is

plotted
in

(b).

0
0.2

0.4
0.6

0.8
1

0

0.5 1

1.5 2

(a)

Pulse shape

Λ
(

)z
z

=
−

1
15

z

Λ
(

)
(

)
z

z
T
=

−
4532

1
2

0
0.2

0.4
0.6

0.8
1

−
0.2

−
0.1 0

0.1

0.2

(b)

z

V z T( )
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E
xam

ple
2:

P
ulse

Shaping
w

ith
C

om
pression

Λ
(z)

=


1−

z
m

,
0≤

z≤
1
,

0
,

1
<

z
,

Λ
(−

z)
,

z
<

0
,

Λ
T
(z)

=


[1−

(α
z)

n] α
m

(n
+

1)

n
(m

+
1)

,
0≤

z≤
1α

,

0
,

1α
<

z
,

Λ
(−

z)
,

z
<

0
,

.

➱
T

he
equation

for
U

can
be

integrated
to

give

[
α
U

(ξ)−
(α

U
(ξ))

n
+

1

n
+

1

]
m

(n
+

1)

n
(m

+
1)

=
ξ−

ξ
m

+
1

m
+

1
,

α
U

(ξ
=

1)
=

1,
and

V
(ξ

=
1)

=
(1/α−

1)

T
.



E
xam

ple:
P

ulse
Shaping

w
ith

C
om

pression

➱
For

the
case

of
a

beam
being

shaped
but

not
com

pressed,
α

=
1

and
V

(ξ
=

1)
=

0.W
hen

α
>

1,the
beam

is
sim

ultaneously
being

shaped
and

com
pressed,

and
V

(ξ
=

1)
<

0.

➱
Initialpulse

shape
Λ

(z)
=

1−
z

1
5

and
finalpulse

shape
Λ

T
(z)

=
(135/32)(1−

9z
2)

are
plotted

in
(a).

T
he

initialvelocity
V

(z)
is

plotted
in

(b).

0
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0.4
0.6

0.8
1

0 1 2 3 4 5

(a)

Pulse shape

Λ
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)z
z

=
−

1
15

z

Λ
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)
(

z
T
=

−
135
32

1
9z

2)

0
0.2

0.4
0.6

0.8
1

−
1

−
0.5 0

0.5 1

(b)

z
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1st
O

rder
Space-C

harge
C

orrection

➱
W

e
now

carry
outthe

analysis
to

O
(K

l ).L
et

λ
(t,z)

=
λ

0 (t,z)
+

λ
1 (t,z)

,

v
z (t,z)

=
v

z
0 (t,z)

+
v

z
1 (t,z)

.

➱
To

O
(K

l ),(
dd
t )

0

λ
1

=
∂
λ

1

∂
t

+
v

z
0 ∂

λ
1

∂
z

=
−

λ
1 ∂

v
z
0

∂
z

−
∂∂
z
(λ

0 v
z
1 )

,

(
dd
t )

0

v
z
1

=
∂
v

z
1

∂
t

+
v

z
0 ∂

v
z
1

∂
z

=
−

v
z
1 ∂

v
z
0

∂
z

−
K

l ∂
λ

0

∂
z

.

➱
U

sing
the

m
ethod

of
variationalcoefficients,the

solution
is

found
to

be

v
z
1

=
1

1
+

V
′0 (ξ)t {

V
1 (ξ)−

K
l
∂∂
ξ [

Λ
0 (ξ)

V
′0 (ξ)

ln
[1

+
V

′0 (ξ)t] ]}
.

H
eavy
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F
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V
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1st
O

rder
Space-C

harge
C

orrection

➱
B

y
the

sam
e

procedure,

λ
1

=
Λ

1 (ξ)

1
+

V
′0 (ξ)t −

1

1
+

V
′0 (ξ)t

∂∂
ξ {

Λ
0 (ξ)V

1 (ξ)t

1
+

V
′0 (ξ)t

−
K

l Λ
0 (ξ)

∂∂
ξ [

Λ
0 (ξ)

V
′0 (ξ) ]

V
′0 (ξ)t−

ln
[1

+
V

′0 (ξ)t]

[1
+

V
′0 (ξ)t] 2

−
K

l Λ
20 (ξ)

V
′0 (ξ)

V
′′0
(ξ)

t
2

[1
+

V
′0 (ξ)t] 2 }

.

➱
A

ttim
e

t
=

T
,w

e
obtain

Λ
T
(z)

=
λ

0 (t
=

T
,z)

+
λ

1 (t
=

T
,z).

Since
Λ

T
(z)

and
Λ

(z)
are

prescribed
in

the
pulse

shaping
problem

,
w

e
take

Λ
T

1 (z)
=

0
and

Λ
1 (z)

=
0.T

his
results

in

V
1 (ξ)

=
K

l
∂∂
ξ [

Λ
0 (ξ)

V
′0 (ξ) ]

V
′0 (ξ)−

ln
[1

+
V

′0 (ξ)T
]/T

1
+

V
′0 (ξ)T

+
K

l Λ
0 (ξ)

V
′0 (ξ)

V
′′0
(ξ)

T

1
+

V
′0 (ξ)T

+
c ′.



C
orrection

for
D

eviation
from

the
Sym

m
etry

➱
To

focus
entire

beam
pulse

onto
the

sam
e

focal,the
self-sim

ilar
sym

m
etry

con-
dition

need
to

be
satisfied.

➱
Self-sim

ilar
drift

com
pression

schem
e

satisfies
the

sym
m

etry
condition

for
the

line
density.

➱
It

is
difficult

to
guarantee

the
sym

m
etry

condition
for

the
transverse

em
ittance

due
to

the
com

plex
dynam

icalbehavior.

❍
L

ongitudinalcom
pression

❍
N

on-periodic
transverse

focusing
lattice

and
finalfocus

m
agnets.

➱
H

ow
ever,in

m
ostheavy

ion
fusion

system
s,the

transverse
em

ittance
is

sm
all.

➱
T

he
deviation

from
the

self-sim
ilar

sym
m

etry
condition

due
to

the
transverse

em
ittance

can
be

treated
as

a
perturbation.

➱
D

eliberately
im

pose
another

perturbation
to

the
system

to
canceloutthe

pertur-
bation

due
to

the
un-sym

m
etric

transverse
em

ittance.



C
orrection

for
D

eviation
from

the
Sym

m
etry

➱
D

em
onstrate

this
technique

using
the

parabolic
longitudinal

drift
com

pression
schem

e
for

a
typicalun-neutralized

heavy
ion

fusion
beam

.

➱
T

he
perturbation

introduced
to

cancel
out

the
un-sym

m
etric

em
ittance

effect
w

illbe
four

tim
e-dependentm

agnets.

➱
First,a

driftcom
pression

and
finalfocus

lattice
is

designed
for

the
centralslice

(Z
=

0),
and

then
four

quadrupole
m

agnets
at

the
beginning

of
the

drift
com

-
pression

are
replaced

by
four

tim
e-dependent

m
agnets

w
hose

strength
varies

around
the

design
value

for
the

centralslice.

➱
T

he
tim

e-dependent
m

agnets
essentially

provide
a

slightly
different

focusing
lattice

for
the

differentslices.

➱
T

ransverse
envelope

equations
for

every
slice

in
a

bunched
beam

,

∂
2a

(s,Z
)

∂
s
2

+
κ

q a
(s,Z

)−
2K

(s,Z
)

a
(s,Z

)
+

b(s,Z
) −

ε
2x (s,Z

)

a
(s,Z

)
3

=
0,

∂
2b(s,Z

)

∂
s
2

−
κ

q b(s,Z
)−

2K
(s,Z

)

a
(s,Z

)
+

b(s,Z
) −

ε
2y (s,Z

)

b(s,Z
)
3

=
0,



C
orrection

for
D

eviation
from

the
Sym

m
etry

➱
K

(s,z)
is

non-periodic
due

to
the

longitudinalcom
pression.

➱
κ

q
need

to
be

non-periodic
to

reduce
the

expansion
of

the
beam

radius.

➱
Since

the
quadrupole

lattice
is

notperiodic,the
conceptof

a
“m

atched”
beam

is
notw

elldefined.

➱
H

ow
ever,

if
the

the
non-periodicity

is
sm

all,
that

is,
if

the
quadrupole

lattice
changes

slow
ly

along
the

beam
path,

w
e

can
seek

an
“adiabatically”-m

atched
beam

w
hich,by

definition,is
locally

m
atched

everyw
here.



N
on-periodic

L
attice

D
esign

for
C

entralSlice

➱
G

oal:

❍
C

onstantvacuum
phase

advance
σ

v
=

π
/5−→

η
B

′L
2

=
con

st.

❍
L

ength
z

b −→
×

1

21.8
.Perveance

K
−→

×
21.8.

❍
B

eam
radius

a−→
×

2.33.

❍
H

alf
lattice

period
L
−→

×
12

.

❍
Filling

factor
η−→

×
4.

η
B

′−→
×

4.

➱
H

ow
do

K
,

L
,η

,
B

′,
a,and

b
depend

on
s?

❍
K

(s)
is

given
by

the
longitudinaldynam

ics.

❍
L

(s),η
(s),and

B
′(s)

are
determ

ined
by

requirem
ents

such
as

constantvac-
uum

phase
advance.

❍
a
(s)

and
b(s)

are
determ

ined
by

the
transverse

envelope
equations.

H
eavy

Ion
F

usion
V

irtualN
ationalL

aboratory



N
on-periodic

L
attice

D
esign

for
C

entralSlice

➱
A

lattice
w

hich
keeps

both
the

vacuum
phase

advance
and

depressed
phase

ad-
vance

constantis
less

likely
to

induce
beam

m
ism

atch.

➱
V

acuum
phase

advance
σ

v
and

depressed
phase

advance
σ

are
given

by

2(1−
cos

σ
v )

=
(1−

2η3
)η

2 (
B

′

[B
ρ
] )

2

L
4,

σ
2

=
2(1−

cos
σ

v )−
K (

2L

〈a〉 )
2

.

➱
A

ssum
ing

η

1,w

e
obtain

η
2(

B
′

[B
ρ
] )

2L
4

=
con

st.,
K

(
2L

〈a〉 )
2

=
con

st.,

for
constantvacuum

phase
advance

and
constantdepressed

phase
advance.

➱
Itis

under-determ
ined.

A
s

one
possible

choice,let

L
=

L
0
ex

p
(−

ln
2

ss
f

),
η

=
η

0
ex

p
(2

ln
2

ss
f

),
B

′
=

con
st.



N
on-periodic

L
attice

D
esign

for
C

entralSlice

➱
L

etthe
lattice

lengths
are

L
0 ,

L
1 ,

...,
L

N
=

L
f ,

L
1

=
L

0
ex

p
(−

ln
2
2L

0

s
f

),

L
2

=
L

0
ex

p
(−

ln
2
2(L

0
+

L
1 )

s
f

),

......

L
i
=

L
0
ex

p
(−

ln
2
2 ∑

i−
1

0
L

i

s
f

),

2(L
1
+

L
2
+

...+
L

N
)

=
S

f .

➱
For

L
f

=
3.36m

,L
0

=
6.72m

,and
s

f
=

421.5m
,calculation

gives
N

=
45.

➱
For

an
adiabatically-m

atched
solution,

❍
T

he
envelope

is
locally

m
atched

and
contains

no
oscillations

other
than

the
localenvelope

oscillations.

❍
O

n
the

globalscale,the
beam

radius
increases

m
onotonically.



F
inalF

ocus
M

agnets
for

C
entralSlice

➱
Four

final
focus

quadrupole
m

agnets
assure

that
the

envelope
converge

in
both

directions
atthe

exitof
the

lastfocusing
m

agnet.

➱
T

hen
the

beam
enters

the
neutralization

cham
ber

w
here

the
space-charge

force
is

neutralized,and
is

focused
onto

a
focalpointat

z
f
o
l
=

−
a

∂
a
/∂

s ∣∣∣∣
s=

s
f

f

=
−

b

∂
b/∂

s ∣∣∣∣s=
s
f

f

,

➱
T

he
transverse

spot
size

is
determ

ined
by

the
em

ittance
and

incident
angle

at
s

=
s

f
f ,

a
f
o
l
=

ε
x

∂
a
/∂

s ∣∣∣∣
s=

s
f

f

,
b
f
o
l
=

ε
y

∂
b/∂

s ∣∣∣∣s=
s
f

f

.

➱
For

the
central

slice
at

z
=

0,
w

e
obtain

z
f
o
l

=
5.276

m
,

and
a

f
o
l

=
b
f
o
l

=
1.22

m
m

.H
eavy

Ion
F

usion
V

irtualN
ationalL

aboratory



T
ransverse

D
ynam

ics
for

C
entralSlice
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z

a
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=
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(
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m

m
m

m
b
z

b
z
=

0
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0
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m
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T
im

e-D
ependent

L
attice

for
E

ntire
P

ulse

➱
O

ther
slices

(Z
=

z/z
b �=

0)
should

be
focused

onto
the

sam
e

focalpoint

z
f
o
l
=

5
m

,
a

f
o
l ≈

b
f
o
l �

1.2
m

m
.

➱
For

the
λ
(s,z)

=
λ

b (s)[1−
z

2/z
2b (s)],the

self-sim
ilar

sym
m

etry
condition

im
-

plies
that

the
solution

for
all

of
the

slices
can

be
scaled

dow
n

from
that

of
the

centralslice:


a
(s,z)

b(s,z)
∂
a
(s,z)/∂

s
∂
b(s,z)/∂

s 
= √

1−
z

2/z
2b (s) 

a
(s,0)

b(s,0)
∂
a
(s,0)/∂

s
∂
b(s,0)/∂

s 
,

if
the

em
ittance

is

❍
negligibly

sm
allor

❍
scales

w
ith

the
perveance

according
to

(ε
x ,ε

y )∝
1−

z
2/z

2b (s).

H
eavy

Ion
F

usion
V

irtualN
ationalL

aboratory



T
im

e-D
ependent

L
attice

for
E

ntire
P

ulse

➱
H

ow
ever,the

em
ittance

in
generalis

sm
allbutnotnegligible,and

does
notscale

w
ith

the
perveance.

➱
In

fact,
during

adiabatic
drift

com
pression,

the
em

ittance
scales

w
ith

the
beam

size,i.e.,ε
x ∝

a
and

ε
y ∝

b.

➱
Self-sim

ilar
sym

m
etry

condition
can’tbe

satisfied.

➱
V

ary
the

strength
of

four
m

agnets
in

the
very

beginning
of

the
driftcom

pression
for

differentvalue
of

z
such

thatthe
self-sim

ilar
sym

m
etry

holds
at

s
=

s
f
f .

➱
N

um
erically,the

necessary
variation

of
the

strength
of

the
m

agnets
is

found
by

a
4D

root-searching
algorithm

.

➱
A

sm
allperturbation

in
the

strength
of

the
m

agnets
introduces

a
sm

allenvelope
m

ism
atch

in
such

a
w

ay
thatthe

self-sim
ilar

sym
m

etry
is

satisfied
at

s
=

s
f
f .

H
eavy

Ion
F

usion
V
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E
nvelope

dynam
ics

for
the

z/z
b (s)

=
0.968.
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T
im

e-D
ependent

L
attice

for
E

ntire
P

ulse
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Figure
1:

Strengths
of

the
3rd,

5th,
7th,

and
9th

m
agnets

as
functions

of
z/z

b (s).
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C
onclusion

➱
Tw

o
ofthe

m
ostim

portantrequirem
ents

of
the

driftcom
pression

and
finalfocus

system
s

w
ere

considered.

❍
A

large
com

pression
ratio

needs
to

be
achieved.

❍
T

he
entire

beam
pulse

needs
to

be
focused

onto
the

sam
e

focal
spot

at
the

target.

➱
Itis

necessary
to

use
a

self-sim
ilar

driftcom
pression

schem
e.

❍
For

un-neutralized
beam

s,the
L

ie
sym

m
etry

group
analysis

w
as

applied
to

the
w

arm
-fluid

m
odel

to
system

atically
derive

the
self-sim

ilar
drift

com
-

pression
solutions.

❍
For

neutralized
beam

s,
the

1D
V

lasov
equation

w
as

solved
explicitly

and
fam

ilies
of

self-sim
ilar

driftcom
pression

solutions
w

ere
constructed.

➱
A

non-periodic
lattice

has
been

designed
so

thatitis
possible

to
actively

control
the

transverse
size

of
the

beam
.

H
eavy
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F
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V
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C
onclusion

➱
To

com
pensate

for
the

deviation
from

the
self-sim

ilar
sym

m
etry

condition,four
tim

e-dependent
m

agnets
w

ere
introduced

in
the

upstream
such

that
the

entire
beam

pulse
can

be
focused

onto
the

the
sam

e
focalspot.

➱
T

he
self-sim

ilar
longitudinaldriftcom

pression
schem

e,com
bined

w
ith

the
non-

periodic,tim
e-dependentlattice

design,provide
the

essentialelem
ents

ofa
leading-

order
driftcom

pression
m

ethod.

➱
T

he
next-step

investigation
w

ill
be

focused
on

second-order
effects,

such
as

em
ittance

grow
th

during
driftcom

pression,and
the

tw
o-w

ay
coupling

betw
een

the
longitudinaland

transverse
dynam

ics.

H
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F
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