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LPS are specially well suited for depositing high 
density of energy in dense matter

Compare to standard  Fast Ignition with electrons (Tabak 
94):
• Very low emittance 
• Less charge and current
• Less instability, and ⊥ dispersion
• Bragg Peak
• Patel et al. PRL 91, 25004: T>20 eV in solid target
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Fast Ignition of an Inertial Target by Proton Beams
M. Roth et al PRL 2001

• 10 kJ, 10 ps, 15 MeV -> I>107A
• large distances
• the LPS should be protected 
• collective effects: H. Ruhl et al., Nucl. 
Fusion 44, 438 (2004)
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An efficient protection of the LPS can require a substantial 
amount of heavy material on the path of the protons

3 µm gold foil

30 µm gold foil

NIF target
(Multi)

C foil in front
of 3 µm Gold foil

MULTI2002, Rafael Ramis

D (LPS-FOIL) > 7 cm



HIF2004

The MBC-ITFIP code is used to describe
the transport of proton beams inside dense targets

Standard Monte-Carlo method. Stopping and soft collisions as 
continuous forces, hard collisions as stochastic processes
Born I dielectric formalism for stopping
Classical collision theory for scattering (Lindhard 68, Ziegler 85)
Average Atom Model to describe atomic physics and screening 
potential. R-HFS for bound electrons, R- TFD for free electrons
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The elastic scattering cross section is derived from
the magic formula of Lindhard et al. 1968
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Modifications of the atomic screening are more clearly
seen at low energy and for small angles
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Heavy materials yield larger scattering angles, transverse
diffusion is more sensitive to the plasma state
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The influence of temperature is increased at low 
density, due to higher ionization states
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When the LPS is put outside the capsule, with a 30µm 
protecting gold foil, the transverse dispersion is rather large

Ep=15 MeV, D = 2.7 mm, 30µm gold foil,
99% of the protons are outside Rc (16µm)
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Even for a protecting foil close to the target,
the dispersion is large, when considering

a broad energy distribution

D=0.5 mm, 30 µm gold foil, energy distribution of present LULI source
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Efficiency of energy deposition can be estimated through
a simple formula for the width of the distribution in the 

transverse plane
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The sensitivity on the shape of the energy 
distribution depends on the thickness of the protecting foil
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Conclusion

• The specific properties of LPS (small emittance but large energy spread)
render it, more appropriate to analyze dense matter properties from angular 
diffusion than from energy loss.
• Looking at forward direction and for thin targets it seems possible to 
investigate the plasma influence on the screening of the nucleus.
• For Fast Ignition, high density of deposited energy, required a minimum 
growth of transverse dispersion during the travel between the LPS up to the 
DT. Transport is a crucial issue for proton fast ignition as it is in the electron 
case.
• One technical problem to solve should be to protect efficiently the LPS 
during the compression phase, without introducing large transverse 
dispersion.
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