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1 Final HIB Transport

/ Brief summary for HIB Final Transport (A part)

D.A. Callahan: Fusion Eng. & Design (1996), UCRL-JC-121279(1995)
“Chamber Transport Physics”

E. Lee – Divergence analyses + Solenoidal Transport
/ Unneutralized ballistic transport in vacuum: sensitive to HIB charge state

/ Preformed plasma Sheet & Column:
- Good performance, require an plasma generation device
- Near the target, hot electrons can not be focused, as HIB is.  

-> Autoionizing target -> a target with a plastic  

/ Pinched scheme: 100% charge & 99% current Neutralization 
- small hole at the reactor wall & cost effective
- stability in pinch position & beam dynamics

/Channel transport
- External magnetic field and Z-discharged plasma
- channel formation & expansion



J.L.Vay & C. Deutsch: PoP (1998), more….
“Charge compensated HIB propagation”

/ Koshkarev Scheme: Pt+ & Pt- -> combined to compensate charge

/ 3D PIC simulations: BPIC

C.L. Olson: NIM A464(2001), …
“Camber Transport”

/ Detail comparison among various transport schemes
/ Transport  issues are well summarized



R.R.Peterson & M.E. Sawan: UWFDM-1040(1997), more….
“Preformed plasma channel”

/ Channel Formation 
/ static & filamentation instabilities
/ Channel expansion
/ Energy loss

-> Transportable window through the plasma ~5mm channel 

W.M. Sharp, et al.: PoP, Fusion Sci. & Tech. 43, 393(2003), …
Bangerter, Langdon, et al., …for Photoionization

/ Precise HIB final transport LSP simulations
including electron emission from wall, photoionization by target radiation, 
preneutralization by a plasma, …
/ Foot pulse transport
-> Plasma neutralization is effective. …



S. Yu、Roy, et al:  PoP, 11(2004)2890, et al.
“NTX Experiments Charge compensated HIB propagation”
/ Beautiful suppression of beam divergence by a plasma

Stability problems
R.L. Davidson, H.Qin, et al. 
S.M. Lund, et al.
T.Kikuchi, T.Katayama, K.Horioka, et al. 

D.R.Welch: LSP code
A.Friedman, D.P. Grote et al, WARP code

W.B. Herrmannsfeldt: Beam-pipe electron trapping
S. Kawata, T. Kikuchi, T. Someya, S.Kato, et al.: 
“Insulator guide transport”

/ electron supply by a surface plasma at the ceramics wall
-> - at the final 10-20cm near the target at the chamber center?

- collisions
-> - simple & no additional plasma generation device



Neutralization of beam space charge

HIB transport through a tube liner                
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1. Local electric field creation

Physical Mechanism for 
the Insulator Guide-based HIF Transport

Insulator Guide
(Ceramics)Electric Field

Ion Beam

Plasma
[Origin of plasma 
is an absorbed gas or vapor.]

Insulator Guide

2. Discharges and plasma production

3. Electron extraction

Plasma Insulator Guide

Electrons Emitted



Input Pb+ Ion Beam Waveform 

Pulse width: 10 nsec

Max of beam current: 5 kA
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Ion beam and electrons from insulator guide

Simulation Results(With insulator guide)
Pb Ion maps
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Total space charge

History of the Total Space Charge

Charge neutralization is self-regulated
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With insulator guideWithout insulator guide

Improvement of Focusing

Change of radius at Z=210cm
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Temperature
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rb=1~3cm
Pb+ Plasma Electrons to 

neutralize HIB charge

Bunched beam ~ a few 10 nsec
nb0~1012/cc, 4~10GeV, 1~5kA

3~5m

nc_neutral~1014/cc
nce~1011~1012/cc
τtransport~30~80nsec

/e-e Collisions: small νee~10-2~103/sec
/Stabilities: e-e, b-e
/Neutralized beam dynamics at the middle  

-> rb=5-10mm
-> nb~1013/cc >> nce~1011~1012/cc
-> may induce ambipolar field beam expansion

One of Main Approaches for HIB Final Transport:  
/ Neutralized Ballistic FINAL 

BEAM TRANSPORT (NBT)

rb=2~3mm
Pb+6

PhotoIonized
electrons

nbe > nc-e

nbe < nc-e

nbe ~ nc-e



Neutralized Ballistic FINAL BEAM TRANSPORT

/Neutralized beam dynamics at the very end 
-> rb=1~3cm => rb=2-3mm

It makes Te high: Te~10~100keV  <- Te~Te0x(rb0/rb)4/3~22xTe0

-> nb0~1012/cc => nb~1014/cc >> nchamber-e~1011~1012/cc
-> λLe >> rb, λDebye-e~0.1mm~0.3mm~ 10% of beam radius

-> may induce ambipolar field beam expansion
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On the other hand
If nbe << nchamber-e, NO problem for the ambipolar expansion.  

Mainly chamber background electrons contribute 
beam charge neutralization.  

For example:  Te=10eV, ne=1014/cc, Zb=5

⊥ε ~0.05eV     Well neutralized!
Deλ ~1.4x10-4cm

br
eT

beN
Zb

5.11∝⊥ε for λDebye-e < r

->              ~ (3~100keV)/(4-10GeV)
for 100cm transport  dr ~ 1~5mm Increase in rbf
->  may be serious.  

///εε⊥



PIC Simulation
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Strong E-field 
generated by high-T electrons
pulls Pb ions out!
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Transport Window in Neutralized Ballistic Transport (NBT)
against Ambipolar-Field Expansion & 
Beam-Chamber Gas Two-stream Instability

b-e Two-stream Instability

Neutralized well by Chamber electrons
Nbi Zb<< Nchamber-e

Ambipolar Expansion

HIB trajectory 
during Chamber transport

b-i Two-stream Instability

8GeV
Zb=3, 
rb=0.5 cm 

0.7cm
1 cm



For NBT

If we have low-Te electrons together with high-Te neutralizing electrons, 
low-Te electrons dominates the charge neutralization.

br
eT

benbZ
5.11∝⊥ε

lowT

highTlowT
effectiveT ≈

+
= 11

1 for Ne_hot ~Ne_low

Therefore if HIB is surrounded by low-temperature electrons, 
NO PROBLEM! 



Possible solutions:

1) Neutralized ballistic transport 
with careful chamber density control and 
with careful beam co-moving electron temperature control

/ Lower electron temperature -> T  -> Cool electron supply
Nbe|cold> Nce|hot at the middle stage!

/ Suppress charge stripping & Low Ib -> 
Zb, nbe -> Low chamber gas density / pressure
But high enough for charge neutralization

2) Through High density chamber plasma nbe < nchamber-e
for all region 

/ can avoid ambipolar field expansion
/ instability analyses 
/ blast wave interactions with a liquid wall, …



2. HIBs illumination Nonuniformity on a pellet

Assumptions:  
/ Ballistic transport inside the target
/ Each beam is divided into beamlets, for example 316 beamlets
/ perfect charge neutralization  





Wednesday Afternoon, June 9, T. Someya, et al., “HIB Illumination on a Target…”



Conclusions:

1. Ambipolar field HIB expansion is pointed out. 

- Its physics is clarified
- Possible solutions are presented
- Transport window is also presented

2. 3-D HIB illumination code was developed

- A Hydro code is now under reconstruction
- will be coupled to our 3-D HIB illumination code
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