Final Beam Transport and Target Illumination

S.Kawata, R. Sonobe, T.Someya, T.Kikuchi, A.I. Ogoyski*

Utsunomiya University, Japan *Varna Tech. Univ., Bulgaria

1 Final HIB Transport

- Brief summary for final Transport
- Ambipolar HIB expansion & Transport window
- 2 HIBs illumination 3-D code
- 3 Conclusions

Relatin g presentations:

Thursday Morning, June 10: T. Kikuchi, et al., "Beam Dynamics …Bunching i n HIF …" Wednesday Afternoon, June 9, T. Someya, et al., "HIB Illumination on a Target…"

This work was partly supported by JSPS & MEXT, Japan. We would like to express our appreciations to Colleagues in VNL, USA & Japan.

1 Final HIB Transport

/ Brief summary for HIB Final Transport (A part)

D.A. Callahan: Fusion Eng. & Design (1996), UCRL-JC-121279(1995) "Chamber Transport Physics"

E. Lee – Divergence analyses + Solenoidal Transport / Unneutralized ballistic transport in vacuum: sensitive to HIB charge state

/ Preformed plasma Sheet & Column:

- Good performance, require an plasma generation device
- Near the target, hot electrons can not be focused, as HIB is. -> Autoionizing target -> a target with a plastic

/ Pinched scheme: 100% charge & 99% current Neutralization

- small hole at the reactor wall & cost effective
- stability in pinch position & beam dynamics

/Channel transport

- External magnetic field and Z-discharged plasma
- channel formation & expansion

J.L.Vay & C. Deutsch: PoP (1998), more…. "Charge compensated HIB propagation"

/ Koshkarev Scheme: Pt+ & Pt- -> combined to compensate charge

/ 3D PIC simulations: BPIC

C.L. Olson: NIM A464(2001), … "Camber Transport"

/ Detail comparison among various transport schemes / Transport issues are well summarized

R.R.Peterson & M.E. Sawan: UWFDM-1040(1997), more…. "Preformed plasma channel"

/ Channel Formation / static & filamentation instabilities / Channel expansion / Energy loss

-> Transportable window through the plasma ~5mm channel

W.M. Sharp, et al.: PoP, Fusion Sci. & Tech. 43, 393(2003), … **Bangerter, Langdon**, et al., …for Photoionization / Precise HIB final transport LSP simulations including electron emission from wall, photoionization by target radiation, preneutralization by a plasma, … / Foot pulse transport

-> Plasma neutralization is effective. …

S. Yu、**Roy, et al**: PoP, 11(2004)2890, et al. "NTX Experiments Charge compensated HIB propagation" / Beautiful suppression of beam divergence by a plasma

Stability problems

R.L. Davidson, H.Qin, et al. S.M. Lund, et al. T.Kikuchi, T.Katayama, K.Horioka, et al.

D.R.Welch: LSP code**A.Friedman, D.P. Grote** et al, WARP code

W.B. Herrmannsfeldt: Beam-pipe electron trapping **S. Kawata, T. Kikuchi, T. Someya, S.Kato, et al**.: "Insulator guide transport"

/ electron supply by a surface plasma at the ceramics wall

- -> at the final 10-20cm near the target at the chamber center?
	- collisions

-> - simple & no additional plasma generation device

HIB transport through a tube liner

Input Pb+ Ion Beam Waveform

- **Max of beam current: 5 kA**
- **Particle energy: 8 GeV**
- **Pulse width: 10 nsec**
- **Beam particle temperature: 10 eV**

History of the Total Space Charge

Temperature

Neutralized Ballistic FINAL BEAM TRANSPORT

/Neutralized beam dynamics at the very end $-r_b=1-3cm \Rightarrow r_b=2-3mm$

It makes Te high: $Te~10~100keV <$ - $Te~Te0x(r_{b0}/r_b)^{4/3}~22xTe0$

 n_{b0} ~10¹²/cc => n_{b} ~10¹⁴/cc >> $n_{\text{chamber-e}}$ ~10¹¹~10¹²/cc -> λ_Le >> r $_\mathrm{b}$, $\lambda_\mathsf{Debye\text{-}e}$ ~0.1mm~0.3mm~ 10% of beam radius

-> may induce **ambipolar field** beam expansion

$$
\frac{d^2\varphi}{dx^2} = 4\pi e(n_e - n_i) \approx 4\pi n_0 e(e^{\frac{e\varphi}{T}} - 1) \text{ for Region A}
$$

Here we can assume $n_e \sim n_i$ in A

$$
\frac{e\varphi}{dx^2} = 4\pi e(n_e) \approx 4\pi n_0 e(e^{\frac{e\varphi}{T}})
$$
 for Region B

$$
n_i \longrightarrow An Exact solution for this nonlinear Eq.:
$$

$$
\frac{d^2\varphi}{dx^2} = 4\pi e(n_e) \approx 4\pi n_0 e(e^{\overline{T}}) \text{ for Region B}
$$
\n
$$
e\varphi = T[1 - 2 \ln(1 + \sqrt{\frac{\exp}{2}} k_{De}r)]
$$
\n
$$
\implies qE = Z_b T k_{De} \left[\frac{2\sqrt{\exp/2}}{1 + \sqrt{\exp/2}(k_{De}r)} \right] \text{ for } r > r_b
$$

At the beam surface & at the middle stage Z_beE[eV/cm]~1.35x10⁻³Zb(n_eT_e)^{1/2}[eV]~(2MeV/cm~10MeV/cm)

$$
e\varphi = T[1-2 \ln(1+\sqrt{\frac{\exp}{2}}k_{De}r)]
$$

\n
$$
\implies qE = Z_b T k_{De} \left[\frac{2\sqrt{\exp/2}}{1+\sqrt{\exp/2}(k_{De}r)} \right] \quad \text{for } r > r_b
$$

After integration of qE between r_b and r_b+λ_{De} ->

$$
\mathcal{E}_{\perp} \propto Z_b \sqrt{\frac{1}{N_{be}} \frac{T_e^{1.5}}{r_b}}
$$
 for $\lambda_{\text{Debye-e}} < r$

-> ^{E_/E}∥ ~ (3~100keV)/(4-10GeV) **for 100cm transport dr ~ 1~5mm Increase in rbf -> may be serious.**

On the other hand

 $\mathsf{n}^\scriptscriptstyle{\triangleright}_\mathsf{e}$

e

e

 ϕ

+

 n_i

+

 $A + \mathbb{N}$ B

+

+

If $n_{be} < n_{chamber-e}$, NO problem for the ambipolar expansion. Mainly chamber background electrons contribute beam charge neutralization.

> For example: $T_e=10eV$, $n_e=10^{14}/cc$, $Z_h=5$ ε_{\perp} ~0.05eV Well neutralized! λ_{De} ~1.4x10⁻⁴cm

for Te=10KeV

Transport Window in Neutralized Ballistic Transport (NBT) against Ambipolar-Field Expansion & Beam-Chamber Gas Two-stream Instability

For NBT

If we have low-*T*e electrons together with high-*T*e neutralizing electrons, low-*T*e electrons dominates the charge neutralization.

$$
\mathcal{E}_{\perp} \propto z_b \sqrt{\frac{1}{n_{be}} \frac{T_e^{1.5}}{r_b}}
$$

$$
T_{effective} = \frac{1}{T_{low} + \frac{1}{T_{high}}} \approx T_{low} \quad \text{for } N_{e_hot} \sim N_{e_low}
$$

Therefore if HIB is surrounded by low-temperature electrons, NO PROBLEM!

Possible solutions:

1) Neutralized ballistic transport with careful chamber density control and with careful beam co-moving electron temperature control

/ Lower electron temperature -> T -> Cool electron supply *N*be|**cold**>*N*ce|**hot** at the middle stage!

/ Suppress charge stripping & Low I_b -> $\textnormal{Z}_{\textnormal{\scriptsize b}},$ $\textnormal{\textsf n}_{\textnormal{\scriptsize be}}$ -> Low chamber gas density / pressure But high enough for charge neutralization

2) Through High density chamber plasma n_{be} < n_{chamber-e} for all region

/ can avoid ambipolar field expansion / instability analyses / blast wave interactions with a liquid wall, …

2. HIBs illumination Nonuniformity on a pellet

Assumptions:

- / Ballistic transport inside the target
- / Each beam is divided into beamlets, for example 316 beamlets
- / perfect charge neutralization

C. Eis

SiS

ුව

Wednesday Afternoon, June 9, T. Som<mark>eya, et al., "HIB Illumination on a Target. Te</mark>

Conclusions:

- 1. Ambipolar field HIB expansion is pointed out.
	- Its physics is clarified
	- Possible solutions are presented
	- Transport window is also presented
- 2. 3-D HIB illumination code was developed
	- A Hydro code is now under reconstruction
	- will be coupled to our 3-D HIB illumination code

Acknowledgements:

This work was partly supported by JSPS & MEXT, Japan. We would like to express our appreciations to Colleagues & Friends in VNL, USA & Japan.

