

Recycling Issues Facing Target and RTL Materials of Inertial Fusion Designs

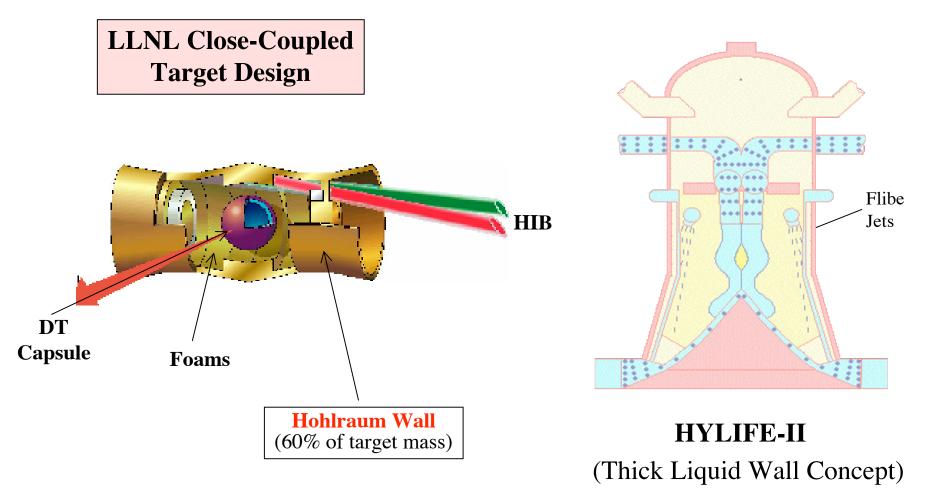
L. El-Guebaly, P. Wilson, M. Sawan, D. Henderson, and A. Varuttamaseni

Fusion Technology Institute University of Wisconsin - Madison

With input from:

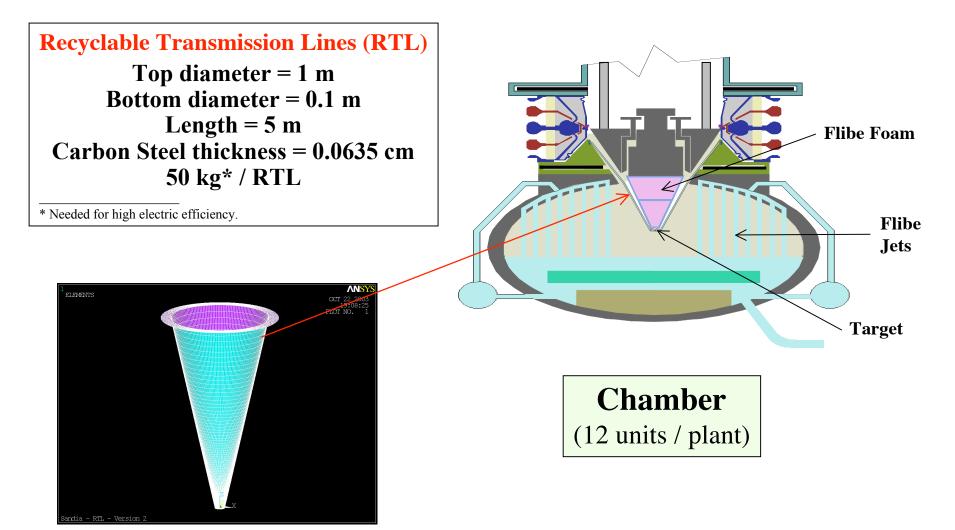
I. Sviatoslavsky, G. Kulcinski, J. Santarius (UW), C. Olson, G. Rochau, C. Morrow (SNL), A. Nobile, A. Schwendt (LANL) D. Goodin, R. Petzoldt (GA), P. Peterson (UCB)

> HI-2004 Symposium June 7-11, 2004 Princeton, NJ



Objectives

- Advise IFE designers on best option to manage HI hohlraum wall radwaste and Z-pinch RTL radwaste:
 - One-shot use, then dispose in repository, or
 - Recycle during plant life (45-50 y)
- Highlight pros and cons of once-through and recycling scenarios.
- Develop irradiation history and timeline for recycling approach.
- Examine **conservative** recycling approach without slag or transmutation product removal.
- Monitor waste level and dose to equipment during recycling.
- Determine economic impact of recycling approach.



Representative IFE-HI Power Plant

Z-Pinch Power Plant

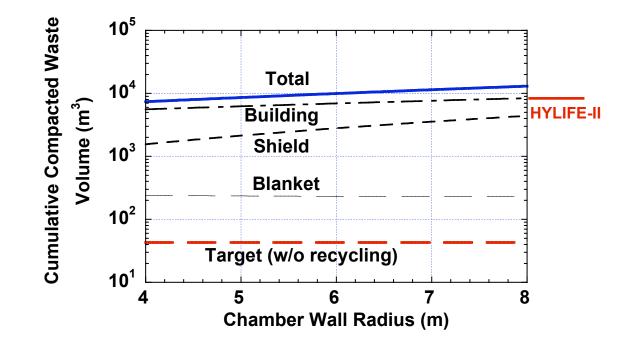
Key Parameters

	ARIES-IFE-HI	<u>Z-Pinch</u>
Target Yield	460 MJ	3000 MJ
Rep Rate	4 Hz	0.1 Hz
# of Units per Plant	1	12
# of Shots per FPY	126 million	38 million
Au/Gd Hohlraum Wall or RTL Thickness	15 µm	0.635 mm
Mass of Hohlraum Wall or RTL	0.1 g / target	50 kg / RTL
Volume of Hohlraum Wall or RTL	0.008 cm ³ / target	6000 cm ³ / RTL
Availability	85%	85%
Plant Lifetime	40 FPY (47 y)	40 FPY (47 y)

Pros and Cons of Recycling Scenario

• Pros:

- Low inventory of radwaste.
- Negligible material cost.

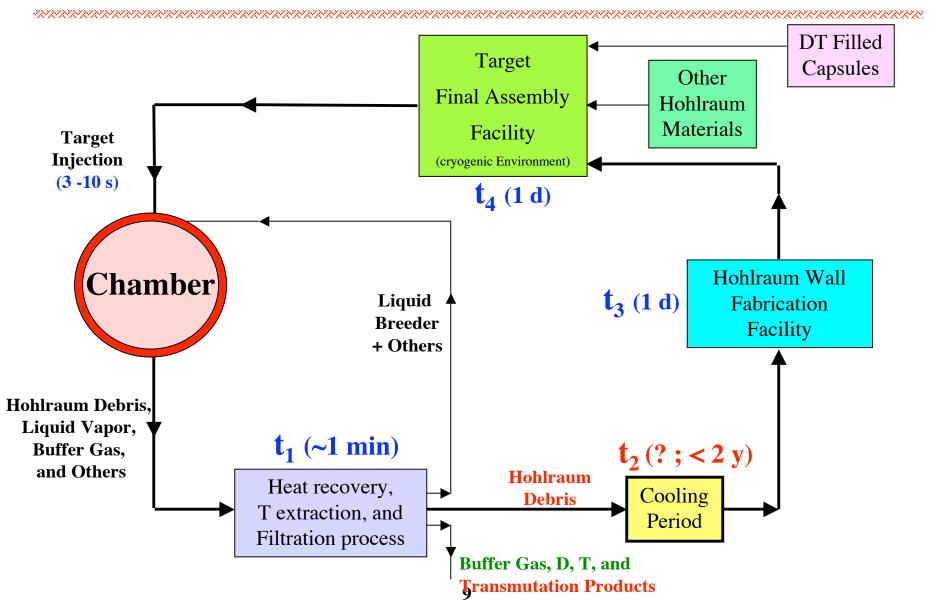

• Cons:

- May generate high-level waste that violates ARIES top-level requirements.
- Require radioactive storage facility in target fab.
- Need purification system to deliver highly pure materials.
- No hands-on and no personnel access to target fab.
- Slow, remotely controlled process.
- Costly process.

Do not recycle unless process offers advantages

Hohlraum Wall Materials Represent <1% of IFE-HI Waste Stream

Recycling is not a "must" requirement for IFE-HI designs


Hohlraum Wall Recycling?!

- It is acceptable among ARIES team members that hohlraum wall materials should not be recycled.
- However, we developed a recycling approach to understand the problem and highlight the cost penalty and design complexity added to HI designs.
- Among wide range of candidate hohlraum wall materials, we selected three materials for this study:
 - Gold/Gadolinium (50/50 wt%)
 - Tungsten
 - Lead

IFE-HI Target Recycling Process

(Hohlraum Wall Materials Spend ≥ 2 days Outside Chamber)

Design Criteria and Codes

Waste disposal rating (WDR)

(for Class C low-level waste)

Clearance Index

(for waste containing traces of radionuclides)

Recycling dose

3000 Sv/hr

1

1

(for advanced remote handling equipment)

• Codes and data:

- DANTSYS Neutral-particle transport code:
- ALARA <u>Pulsed</u> activation code:
 <u>Exact</u> modeling of all pulses (~10,000)
- FENDL-2 Nuclear Data:
 175 neutron and 42 gamma group structure

One-Shot Use Scenario Generates Very Low Level WISCONSIN Waste White recycling Generates High-Level Waste

C	One-Shot Use Scenario		Recycling Scenario
_	WDR	CI	WDR*
Gold/Gadolinium	2 x 10 ⁻⁸	42	3x10 ⁵
Tungsten	2 x 10 ⁻⁶	14.9	0.6
Lead	2 x 10 ⁻⁵	5.6	31

* No cooling period. No transmutation product removal.

Cooling Period Controls WDR and Dose

10⁵

10⁴

10³

10²

10¹

0

Recycling Dose (Sv/hr)

10⁶ 10⁵ 10⁴ 10³ Au/Gd WDR 10² 10¹ **Clacc C Limit** 10⁰ **10**⁻¹ 10⁻² 100 200 300 400 0 **Cooling Period (day)**

> All materials meet advanced RH limit with < 10 d cooling periods

Au/Gd

Pb

5

10

Cooling Period (day)

Advanced

RH Limit

20

15

Au/Gd generates high-level waste that violates ARIES requirements

Recommended Cooling Periods that Satisfy Design Limits

	Cooling Period for WDR < 1	Cooling Period for Dose < 3000 Sv/h	Recommended Cooling Period
Au/Gd	> 2 y* (¹⁵⁸ Tb)	9.5 d (¹⁹⁶ Au)	*
Tungsten	0 (^{186m} Re, ¹⁷⁸ⁿ Hf)	6.2 d (¹⁸⁴ Re)	6.2 d
Lead	13 d (²⁰⁸ Bi, ²⁰² Pb)	< 1 d (²⁰³ Pb, ²⁰² Tl)	13 d

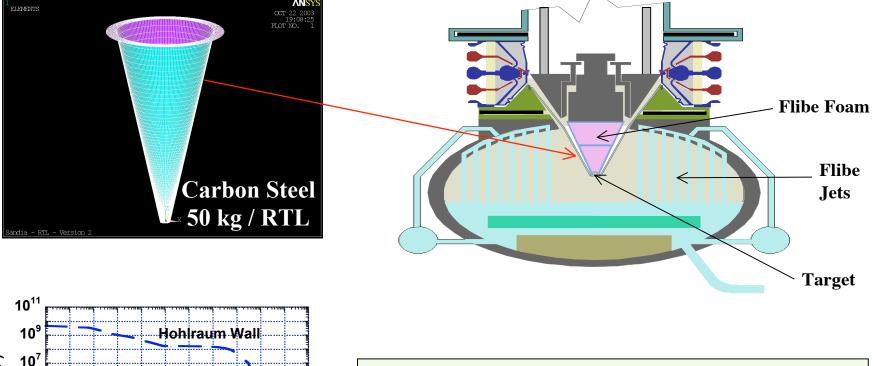
* Insignificant inventory reduction for cooling period exceeding 2 y.

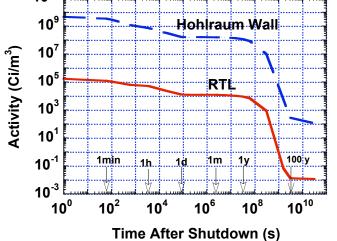
Recycling Doubles HI Cost of Electricity

	One-Shot Use Scenario	Recycling Scenario
Cost per Target	\$ 0.4	\$ 3.15
Change to COE	~10 mills/kWh	~70 mills/kWh
COE	~70 mills/kWh	~130 mills/kWh

Doubling COE to recycle materials that present no waste burden to IFE-HI designs is unacceptable

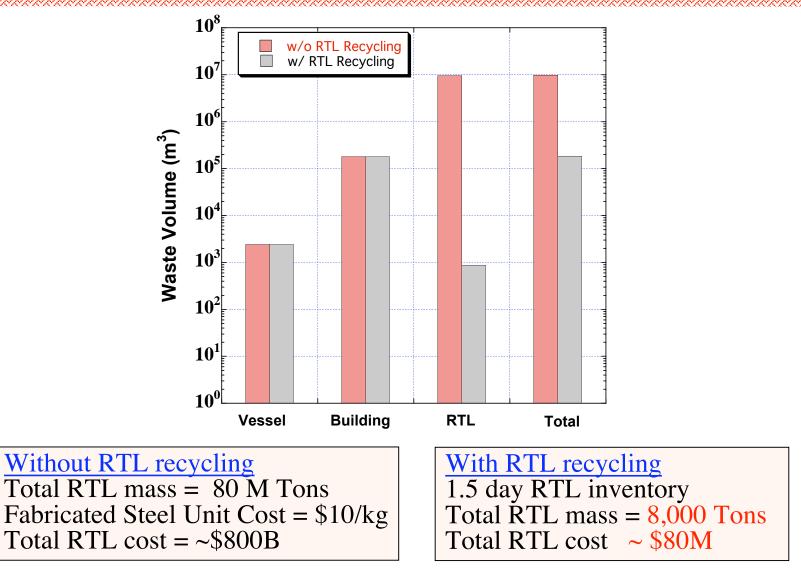
IFE-HI Conclusions


• HI Hohlraum walls represent small waste stream (< 1% of total nuclear island waste)

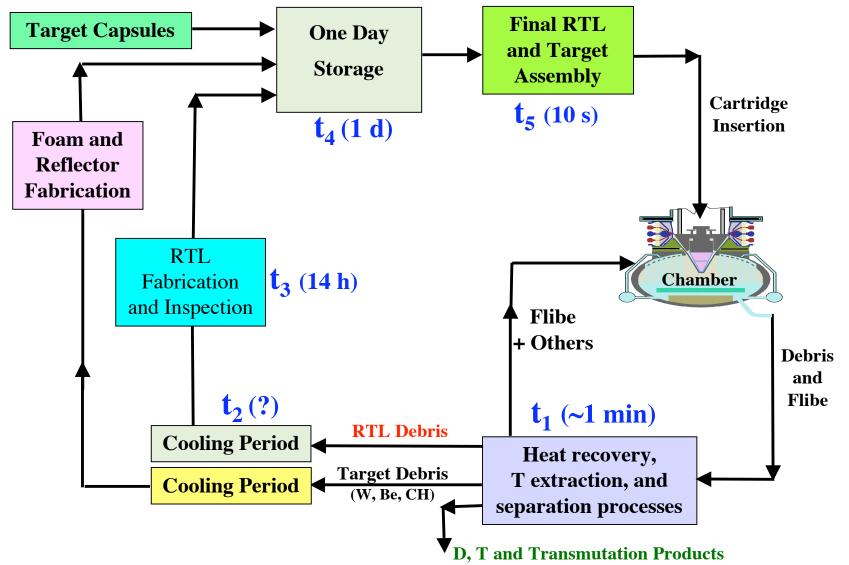

 \Rightarrow recycling is not a "must" requirement for IFE-HI concept.

- Use low-cost materials once-through and dispose as Class A LLW instead of using expensive materials (such as Au and Gd). One-shot use scenario offers:
 - Attractive safety features
 Less complex design
- - Radiation-free target Fab
 Lowest COE
- Target factory designers prefer dealing with non-radioactive hohlraum wall materials and this assessment supports the feasibility of no-recycling approach for HI concepts.

Z-Pinch Power Plant



Less intense neutron flux and softer spectrum at RTL result in much lower activity, WDR, CI, and dose.


RTL Recycling is a "Must" Requirement to Minimize Waste Stream and Enhance Economics

THE UNIVERSITY WISCONSIN MADISON

RTL Recycling Process

(RTL Materials Spend ~1.5 day Outside Chamber)

RTL Results

	Results	Limits
WDR	10-7 Class C	1
	10-3 Class A	
Clearance Index	0.1 @ 100 y	1
	1 @ 50 y	
Recycling dose rate (3)	Sv/hr) 160	3000

Z-Pinch Conclusions

- RTL recycling is a "must" requirement for Z-pinch concept to minimize heavy metal throughput and enhance economics.
- Carbon Steel RTLs satisfy design requirements when recycled for entire plant life even without cooling period:
 - Class A low-level waste \Rightarrow Shallow land burial
 - Clearance index < 1 \Rightarrow Release to commercial market after 50 y
 - Dose < 160 Sv/hr \Rightarrow No hands-on recycling
- Online removal of transmutation products helps meet design requirements with wide margin, but complicates recycling process and generates high level waste.
- Recycling process must be accomplished remotely in 1.5 day.
- Advanced remote handling equipment should be developed to handle high dose rate (200 Sv/hr or more).
- COE should reflect cost of RTL remote recycling.

Overall Conclusions

• Recycling offers advantages to Z-pinch while adds complexity and cost to HI systems.

- Recommendations:
 - Use low-cost hohlraum wall materials for HI targets
 - once-through, then dispose in repositories.
 - Recycle RTLs of Z-pinch.