SIMULATING ELECTRON CLOUD EFFECTS IN HEAVY ION ACCELERATORS*

R.H. Cohen^{1,2}, A. Azevedo³, A. Friedman^{1,2}, M.A. Furman³, S.M. Lund^{1,2}, A.W. Molvik^{1,2}, P. Stoltz⁴, J.-L. Vay^{1,2}, S. Veitzer⁴

¹ HIF-VNL, ² LLNL, ³ LBNL, ⁴ TechX Corp

Presented at 2004 HIF Symposium Princeton, NJ, USA June 9, 2004

* UCRL-CONF-204532 Work performed for U.S. D.O.E. by U.C. LLNL under contract W7405-ENG-48 and by U.C. LBNL under contract DE-AC03-76F00098

The Heavy Ion Fusion Virtual National Laboratory

R. Cohen, HIF04, -1-

OUTLINE

- Distinguishing features of ecloud issues for HIF
- Our plan for self-consistent modeling
- Example with wall electron sources
- Electron effects on ions: simulations with specified electron distributions
- Preliminary results for averaged electron dynamics
- Summary

Related papers:

Molvik et al (earlier this m orning) Stoltz et al (poster, this afternoon)

R. Cohen, HIF04, -2-

HIF accelerators have distinguishing features that impact electron cloud issues

Compared to other accelerator applications:

- Common to all: uncontrolled source of negative charge, can degrade beam
- Distinguishing aspects of HIF accelerators (U.S. main line with magnetic quadrupole focusing):
 - Linac with high line charge density
 - Economics-driven large fill factor
 - Induction accelerator -- Beam pipe only in quad magnets ⇒ scrape-off only in quads
 - Electrostatic accelerating fields between quads
 - Large fraction of length occupied by quadrupoles (>50% at injector end)
 - Long(ish) pulses -- multi-µs at injector end

Consequences

- Dominant e⁻ source: desorption of gas (long pulse) and electrons (short pulse) from ion scrape-off
- Multiturn resonant multipactoring not an issue
- If accelerating gaps:
 - Electrons largely confined to the quadrupole in which they are born, and electron density smaller in gaps than in quads
 - Electrons born from ionization of neutrals deeply trapped;
 lifetime in a quad ~ time to drift (ExB, magnetic) out of a quad
 - Accelerating gaps enable electrons to overcome beam potential

Toward a self-consistent model of electron effects

• Plan for self-consistent electron physics modules for WARP

• Key: operational; implemented, testing; partially implemented; offline development

Example of current capability: wall-born electrons from primary and secondary ion bombardment

- WARP ion slice simulation
 - 100 lattice-period transport system (no acceleration)
 - Slightly misaligned magnets to exaggerate beam scrapeoff
- Gather data for ions impacting wall and calculate:
 - Electrons produced (from simple fit to Molvik et al data)
 - Scattered ion population, from TRIM Monte-Carlo code
- Follow scattered ions in WARP until they next impact wall.
- Calculate electrons produced by those ions
- Follow dynamics of electrons produced by primary and scattered ion impacts with WARP; accumulate electron charge density

Calculation of n_e from wall-born electrons shows importance of following scattered ions

- Full-orbit calculations of • electrons born near wall from impact of lost beam ions
 - Based on initial ion-wall impacts: cloud confined to wall near beam ellipse tips

 Dramatic difference if we follow scattered ions and add in the electrons THEY produce

Ion simulations with legislated electron clouds show level of acceptable density and highlight areas for concern

- Perform ion simulations with legislated negative charge distributions to mock up electrons from gas ionization
- All choices have constant parameters within a quad, but variable from quad to quad:
 - Const n_e
 - Random cloud variations
 - Sinusoidal cloud variations, with period chosen to match the relevant beam natural mode
 - Breathing
 - Centroid oscillations (dipole mode)

The Heavy Ion Fusion Virtual National Laboratory

- Elliptical distortion oscillations (quadrupole mode)
- Types of electron cloud variations studied:

Types of electron cloud perturbations specified

20% constant n_e has little effect

20% mean, 0-40% random $n_{\rm e}$ produces significant beam loss, envelope growth, halo

20% $\rm n_e$ with random transverse offsets produces less beam loss, halo, emittance growth

$20\%\ n_e$ with random radial shape variation produces stillless degradation

RESONANT perturbations are more damaging: 0-10% sinusoidally varying n_e resonant with breathing mode

RESONANT perturbations are more damaging: 0-10% sinusoidally varying n_e resonant with breathing mode

Ellipticity resonant with q-pole oscillation (10% n_e) produces small beam loss but more bulk emittance growth

Pertubation-induced loss + desorption potentially a source of instability

- Mechanism:
 - Electron density variations produce enhanced envelope osc.
 - Envelope peaks reaching wall desorb gas

- Gas ionizes, producing more electrons
- Electrons ~ immobile in beam direction due to quadrupoles
- Perturbation will grow or not depending on spatial phase relations
- Wouldn't require const wavenumber (acceleration allowed)
- Very crude estimate of growth rate ~ 1 µs for parameters of simulation

The Heavy Ion Fusion Virtual National Laboratory

• Better calculation in progress

R. Cohen, HIF04, -17-

Self-consistent e-i simulation requires technique to bridge timescales

- Need to follow electrons through strongly magnetized and unmagnetized regions ⇒ need to deal with electron cyclotron timescale, ~ 10⁻¹¹ sec.
- Ion timescales > 10^{-8} sec.
- Algorithm to bridge: interpolation between full-electron dynamics (Boris mover) and drift kinetics (motion along B plus drifts).
- Properly chosen interpolation allows stepping electrons on bounce timescale (~10⁻⁹ sec) yet preserves:
 - Drift velocity
 - Parallel dynamics
 - Physical gyroradius

The Heavy Ion Fusion Virtual National Laboratory

Interpolated model reproduces the e-cloud calculation in < 1/25 time

• Compare full-orbit model, $\Delta t=.25/f_{ce}$, with interpolated model with Δt 25 times longer

Summary/conclusions

- High current, fill factor, pulse length, unclean walls of HIF induction accelerators ⇒ dominant electron source is ionization of neutrals released from walls
 - except ion-impact-produced wall-born electrons for short pulse expts or after drift compression
- Developing self-consistent modeling capability for e-cloud formation, dynamics, effects on ions
- Simulation of dynamics of wall-born electrons from ion impacts shows importance of keeping scattered ions
- Simulation of ion evolution with various model electron distributions shows:
 - effect of random amplitude variations > random offsets > const n_e
 - Resonant sinusoidal perturbations more potent, especially amplitude resonant with breathing mode.
 - Ion beams surprisingly robust: 20% const n_e little effect; several percent resonant perturbation needed for significant impact
 - Possible instability associated with resonant perturbations.

