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Abstract

High intensity charged particle beam propagation in a periodic focusing
lattice has been studied numerically using a model in which the beam
equilibrium and dynamic behavior are described self-consistently by the
nonlinear Vlasov-Maxwell equations. For a long coasting which is
inhomogeneous in the transverse direction, the solutions to the
Vlasov-Maxwell equations for periodic focusing configurations can only be
determined numerically. To carry out this investigation, the Beam Equilibrium
Stability and Transport (BEST) code which uses a 3D low-noise perturbative
particle simulation method, has been extended. The scheme begins with a
smooth-focusing lattice which is the smooth-focusing approximation for the
periodic lattice, and adiabatically replaces the smooth-focusing lattice by the
periodic lattice. With this approach, periodic solenoidal configurations have
been investigated using a slow turn-on time to minimize beam mismatch, and
periodic quadrupole configurations are now being studied.



Objective and Method

I The objective is to find practical solutions for Intense Charged
Particle Beam (ICPB) in Periodic Focusing Configurations so that
we can determine the detailed equilibrium, stability, and transport
properties;

I BEST code is used to numerically solve the Vlasov-Maxwell
equations;

I With the δf simulation method, the BEST code succeeds in

reducing the noise by a factor of
f
δf

;

I To apply the δf simulation method, the numerical scheme begins
with a smooth-focusing lattice model for the periodic lattice, and
adiabatically replaces the smooth-focusing lattice by the periodic
lattice.



Current Status of the Problem

I Analytical approch:
I The nonlinearity of the Vlasov-Maxwell equations makes it impossible to find

a general analytical solution;

I The only analytical solution is the Kapchinskij-Vladimirskij distribution, which
is of limited practical interest;

I Using Hamiltonian Averaging Techniques, it is possible to obtain
approximate analytical solutions.

I Numerically, the δf simulation method is promising. To
apply this method, a "quasi-equilibrium" solution is needed.



Vlasov-Maxwell Equations

The Vlasov-Maxwell equations in a two-dimensional slice model are:
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in which κx (s) and κy (s) are lattice functions, and the transverse focusing
force on a beam particle is given by Ffoc = − [κx (s) x êx + κy (s) y êy ].

Here, Kb = 2Nbe2
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bc2 is the normalized self-field potential.



Periodic Focusing Solenoidal Field
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Figure: Periodic Focusing Solenoidal
field

I The magnetic field is given by:

Bsol (x) = −
1
2

B′
z (z) (x êx + y êy ) + Bz (z) êz

Asol (x) =
1
2

Bz (z) (x êy − y êx ) =
1
2

Bz (z) r êθ

I Periodic variation:

Bz (z + S) = Bz (z)

I The lattice functions are given by:

κx (s) = κy (s) ≡ κz (s) =

„
ebBz (z)

2γbmbβbc2

«2

I In general, Z s0+S

s0

ds κz (s) 6= 0



Alternating-gradient Quadrupole Field
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Figure: An alternating-gradient
quadrupole field

I The magnetic field is given by:

Bq (x) = B′
q (z) (y êx + x êy ) ,

Aq (x) = −1
2

B′
q (z)

`
x2 − y2´

êz .

I Periodic variation:

B′
q (z + S) = B′

q (z)

I The lattice functions are given by:

κx (s) = −κy (s) ≡ κq (s) =
ebB′

q(s)

γbmbβbc2

I κq (s) satisfies:Z s0+S

s0

ds κq (s) = 0



Simulation Scheme I

I Define F 0
b as a zeroth-order equilibrium distribution function which satisfies
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κsf is obtained in the smooth-focusing approximation.
I For a solenoidal lattice,
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I For a quadrupole lattice,
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Simulation Scheme II

I Define δFb and w as δFb ≡ Fb − F 0
b , w ≡

δFb

Fb
. The dynamical equation for w is

given by
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I Here, at s = 0, δκx (s) = δκy (s) = 0;
I For s large enough,

δκx (s) = δκy (s) → κz (s)− κsf

for a solenoidal lattice, and

δκx (s) → κq (s)− κsf , δκy (s) → −κq (s)− κsf

for a quadrupole lattice.



Turning on the Solenoidal Lattice
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Bz (s) is given by Bz (s) = Bz0 [1 + (∆s/2) cos (2πs/S)], where ∆s = ∆m [1− exp (−s/NS)],

and N is the number of lattice periods for turn-on. In the figure, N=10.



Adiabatic Model for the Solenoidal Lattice (I)
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Figure: Time evolution of root mean square radius for the adiabatic model I

sb = 0.2,∆m = 0.2,N = 10

where sb = ω2
pb/2γ

2
bω

2
β⊥ is the normalized beam intensity.



Adiabatic Model for the Solenoidal Lattice (I)
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Figure: Time evolution of root mean square radius for the adiabatic model I



FFT of the Beam Radius Perturbation (I)
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Figure: FFT of δr2 (s) /r2
b0 for N = 10. The left figure is FFT from s = 0 to s = 30S, and the right

figure is FFT from s = 470S to s = 500S.

After sufficient time, we obtain a well-matched periodically-focused beam.



Adiabatic Model for the Solenoidal Lattice (II)
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Figure: Time evolution of root mean square radius for the adiabatic model II

sb = 0.2,∆m = 0.6,N = 10



Adiabatic Model for the Solenoidal Lattice (II)
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Figure: Time evolution of root mean square radius for the adiabatic model II for
∆m = 0.6



FFT of the Beam Radius Perturbation (II)
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Figure: FFT of δr2 (s) /r2
b0 for N = 10 and ∆m = 0.6. The left figure is FFT from s = 0 to

s = 30S, and the right figure is FFT from s = 470S to s = 500S.

After sufficient time, we also obtain a well-matched periodically-focused
beam.



Adiabatic Model for the Solenoidal Lattice (III)
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Figure: Time evolution of root mean square radius for the adiabatic model III

sb = 0.2,∆m = 1.8,N = 10



Adiabatic Model for the Solenoidal Lattice (III)
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Figure: Time evolution of root mean square radius for the adiabatic model III for
∆m = 1.8



δr2
b for Different N
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Figure: Time evolution of root mean square radius for N = 10 (slow turn-on)

sb = 0.9,∆m = 0.2



δr2
b for Different N
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Figure: Time evolution of root mean square radius for N = 0.1 (fast turn-on)

sb = 0.9,∆m = 0.2



FFT of the Beam Radius Perturbation for Different N
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Figure: FFT of δr2 (s) /r2
b0 from s = 0 to s = 30S. The left figure is for N = 10 (slow

turn-on), and the right figure is for N = 0.1 (fast turn-on).



FFT of the Beam Radius Perturbation for Different N
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Figure: FFT of δr2 (s) /r2
b0 from s = 0 to s = 500S. The left figure is for N = 10 (slow

turn-on), and the right figure is for N = 0.1 (fast turn-on).

Larger N ⇒ better beam matching.



FFT of the Beam Radius Perturbation for Different sb
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Figure: FFT of δr2 (s) /r2
b0 from s = 0 to s = 30S. The left figure is for sb = 0.2 and

the right figure is for sb = 0.9. Both are for N = 10 (slow turn-on).

Larger sb ⇒ somewhat better beam matching.



FFT of the Beam Radius Perturbation for Different sb
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Figure: FFT of δr2 (s) /r2
b0 from s = 0 to s = 500S. The left figure is for sb = 0.2 and

the right figure is for sb = 0.9. Both are for N = 10 (slow turn-on).

Larger sb ⇒ somewhat better beam matching.



Turning on the Quadrupole Lattice
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Bq (s) is given by Bq (s) = Bq0∆s sin (2πs/S), where ∆s = [1− exp (−s/NS)], and N is the

number of lattice periods for turn-on. In the figure, N=10.



Adiabatic Model for the Quadrupole Lattice
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Figure: Time evolution in the x direction for N = 20 (slow turn-on). In the figure, xrms is
the root mean square x for all the particles.

sb = 0.1, σv = 57.3◦

where σv is the vacuum phase advance.



Adiabatic Model for the Quadrupole Lattice
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Figure: Time evolution in the x direction for N = 20 (slow turn-on)



FFT of the Root Mean Square x
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Solution of the Envelope Equation
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Figure: Time evolution in the x direction for N = 20 (slow turn-on). In the figure, xrms is
the root mean square x for all the particles.

For beam with sb = 0.1, the δf simulation of the Vlasov-Maxwell equation
agrees quite well with the simulation of the envelope equation for the same
adiabatic turning-on model.



Solution of the Envelope Equation
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Figure: Time evolution in the x direction for N = 20 (slow turn-on)



Conclusion and Future Plan

I For the solenoidal lattice configuration:
I By adiabatically replacing the smooth-focusing lattice with the periodic

solenoidal lattice in the δf simulation, we can obtain good matched beam
after sufficient time.

I With the slower turn-on model, we can obtain better beam matching than the
faster turn-on model.

I The beam with higher intensity matches the solenoidal lattice better than the
beam with lower intensity.

I For the quadrupole lattice configuration:
When the normalized intensity sb = 0.1, δf simulation of the
Vlasov-Maxwell equation agrees with the simulation of the envelope
equations. Similar to the solenoidal case, we can obtain rather good
matched beam after sufficient time. Actually when sb is small enough
(sb < 0.7), we can always obtain good matched beam after sufficient
time.

I More simulations for the quadrupole lattice configuration will be carried
out to investigate the dynamics of the quadrupole focused beam.
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