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Introduction

Ron’s 1972 book

[Methods in Nonlinear Plasma Theory]

was a milestone in plasma-physics publishing.

It remains the cleanest exposition of plasma weak-turbulence theory
(and many other things).

It should be required reading for just about everybody (certainly
present and future theorists).

What has happened
over the subsequent 35 years?

Renormalized strong plasma turbulence theory (with many practical
subtopics)

Stochasticity and nonlinear dynamics as applied to plasmas
Nonlinear gyrokinetic formalism

Advanced computation
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Plasma turbulence theory
dates from the 1960’s.

1959 — Kraichnan’s direct-interaction approximation (DIA)
1960

61

62 — Quasilinear theory (QLT)

63 — Multiple-time-scale methods (Frieman; Sandri);
[Lorenz: Deterministic nonperiodic flow]

64 — Weak-turbulence theory (WTT)

65 — Kadomtsev’s monograph

66 — Resonance-broadening theory (RBT) (Dupree; Weinstock)
67 — Orszag & Kraichnan: critique of RBT; plasma DIA

68

69 — Chirikov’s thesis (on stochasticity)
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The 1970’s:
Ron’s Book; MSR Formalism; Stochasticity

1970
71
72 — Davidson: Methods in Nonlinear Plasma Theory
73 — Martin-Siggia—Rose formalism (classical renormalization)
74

75 — Stochastic acceleration & heating (Smith & Kaufman; Kar-
ney)

76

77

78 — Plasma DIA (DuBois; Krommes);
Treve’s review: “Theory of chaotic motion with application to

controlled fusion research”
79 — Littlejohn: “A guiding center Hamiltonian: A new approach”
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The Methodology of Weak Turbulence Theory

For weak turbulence, the method of multiple time scales is very well

suited (see Davidson):

. 1
Y = \I;_/ ¢+§M¢’¢

(1Q2—7)

Cumulants: C;(t) = (¢¥)(t), Ca(t,t") = (0 (t)dy (1)), ..

1
0:C1 = LC; + EM(Cf + C3),
1
0;Cos = LCy + MC{C5 + 5M03,

1
0;C3 = LC3 + MC:,Cs + 5M(2(J§ + C4),

Crudely, let v/ = O(e). Then a consistent ordering is
Cl ~ 1, Cz ~ €, Cg ~ 62, C4 ~ 63,
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Expand in multiple time scales:

7 0 o O 1) |, 2(2)
il = ... C C
<8t0 Tt T o, )(E 2 TeC2T T+ )

— 2evy (eCél) + 62052))

— M (ezc?‘,z) +ec® 4. ) , (4a)
’ 0 2(2) | 3.3
<a—t0+€a—t1+‘")(€ C3 +€Cg )
+ 3(222 — €7v) (ezcéz) + - )
2
=M [2 (eCél) + 62C§2)) + e3C4§1) + - ] : (4b)
O(e):
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2 (ortseee) _ (5)
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O (€?):
acl? ac?

(1) (2)
= 2vC MC3, 6
9ts + Ot YOy " + 3 (6a)
) ; ,
3+ 3incl® = M[ciV)2. (6b)
dto
Note: 3Q really means Q; 4+ Q5 + Q7 = AQ (with k 4+ 5+ ¢ = 0).
(2) _ (e "0 -1 (1)12
Cy? = M[C — w6(AR), 7
3 — [C57] o (AL) (7)
( 2 )Cm(t ) + 93" (to: 1) _ MCE® (t1).  (8)
at, )72 "1 D
setto 0

to avoid secularity

We finally arrive (schematically) at the wave kinetic equation of WTT:

[(a — 27) C, = Mza(Aﬂ)cg.] (9)
otq
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The multiple-time-scale expansion
breaks down for strong turbulence.

In reality, the resonance is broadened:

5(AQ) = R ( . ) — % (10a)

" “\Zian +iAn) ) ~ AQ2 + Ag? 2
A

~ An? N 10b

[ Terms through ALL ORDERS are required B
to correctly account for the turbulent broadening.
Note that perturbation theory
does not work near the resonance Af) = 0.
kRenormalization is required (see later discussion).)

(" . . . h
The order-by-order construction inherent in the

multiple-time-scale expansion is not well suited to

ksituations in which renormalization is essential.
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Resonances and secularities underlie the origins of
stochasticity, chaos, and turbulence.

Recall Hamiltonian dynamics and the problem of resonant
denominators:

H(J,60) = Ho(J) + 6H(J, ). (11)
Equations of motion:
OH Y o = O0H
o0J o0J
OH x O0H
- =—J=— (12b)
00 00
Let 6H = 5. ™9 H,. Then with 6 ~ 6, + (i,
- O00H mHmezm -0 (girt-Sit _ 1)
AJ = —/ - X —1 — . 13

—

Trouble near m - Q(J) = 0 (see Kolmogorov—Arnold—Moser).
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Analogous problems occur in forced, dissipative
systems; cf. strange attractors.

“butterfly effect” =

e statistical description;

e cumulant hierarchy

through all orders;

e renormalization.

2456 17.84

Fig. 1. The Lorenz strange attractor.

Stochastic / chaotic / turbulent systems exhibit
exponential sensitivity to
small changes in initial conditions.
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A Very Brief Introduction to Renormalization

A model of random passive advection illustrates the basic points:

Butp(&,8) + V (1) - Vop = 0, (14a)
Apibi (t) + iQ(t) Yz = 0, (14b)

where Q(t) = k - V(t). Further, let Q(t) — €, a Gaussian random
number with () = 0, (Q2?) = $82. Thus, study

p = —iQp. (15)

The average response of the oscillator is characterized by the mean
Green’s function (infinitesimal response function) R(t;t’),
which obeys in general

t

O:R(t;t") + [ dt X(t;t) R(t;t) =6(t—t'). (16)
t’ ~——
memory fcn.
(turbulent coll op.)

The goal is to calculate the memory function X..
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Linear dissipation is required to regularize an infinity.

Less ambitiously, characterize the oscillator by a Markovian approx.,
8-R(T) + n™'R = &(7), (17)

where ™! = [*dr (1), and try to calculate ™. In lowest-order
perturbation theory (quasilinear level), it is easy to find that

»QL(r) = B2R© (1) (causal, but otherwise a constant), (18)

where R(®) (1) = H(7) (unit step function). Thus

QL __ ooT 2 RO) (1) = 0 (B = 0),
" _[;dﬂlzf)_{w 520 (19)

To regularize the infinity, add some linear damping:
O + vip = —ip. (20)

Now R (7) — H(7)e ™7, and n? = [“dr X% (p) = B2 /v
(a continuous function of 3).
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Summing through all orders
amounts to enforcing self-consistency
— the essence of renormalization.

With perturbation theory regularized, one can now proceed order by
order, and eventually sum through all orders. The result is the
replacement R(®) — R, i.e.,

=" (r) = B*R(7), (21)
where R(7) = H(7) exp[—(v + n™)7]. Thus we obtain the

self-consistent equation
2
nl __ IB

which can be solved for n™l. In particular, one may now take the

(22)

limit v — 0, whereupon one finds ™! = 3. Note the appearance of

anomalous scaling:

a1 ) B?/v  (quasilinear theory),
= . (23)
B! (renormalized).
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Progress in Statistical Closure Theory

1980
81

82 — Terry & Horton: Drift-wave stochasticity;
Krommes: DIA for three-mode Terry—Horton equations
83 — Waltz: Numerical study of a Markovian closure;
[Lee: Gyrokinetic approach to particle simulation];
[Dubin® et al.: Hamiltonian approach to nonlinear gyrokinetic
equations]

: — More DIA and other closure calculations;
fluctuation noise in PIC simulations;
variational methods for bounding turbulent fluxes (Smith
Kiimn)
~1990 — A major surprise and embarrassment: EDQNM closure doesn’t
work with waves (Bowmamn)

2 Green = Princeton graduate student.
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Progress, continued

1993 — Bowman et al.: Realizable Markovian Closure (RMC)
94
95 — Hu et al.: Hasegawa—Wakatani equations and the RMC

96 — [Holmes, Lumley, & Berkooz: Turbulence, Coherent Struc-
tures, Dynamical Systems and Symmetry]

97
98 — Diamond et al.: Zonal flows and self-regulating DW turbulence

99

2000 — Krommes & Kim: Interactions of disparate scales in drift-wave
turbulence (unification of theories of ZFs and eddy viscosity)

2005 — Nevins, Hammett, et al.: Sampling noise in PIC simulations;
Kolesnikov: “Bifurcation theory of the transition to collision-

less ion-temperature-gradient-driven plasma turbulence”
%PPP[
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An Example of State-of-the-Art Research

on Plasma Turbulence:
Blob Generation in a Turbulent Tokamak Edge

NSTX 111517 @ 210 ms  Fr #70

Filter=0D madian=% maox=2300 L0000 US

Fig. 2. Visualization of edge turbulence in NSTX using the
gas-puff-imaging diagnostic. See http://www.pppl.gov/~szweben/
for movies and more.
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The theory of blob generation
requires knowledge and synthesis
of many facets of linear and nonlinear physics.

In the spirit of Methods of Nonlinear Plasma Theory, we would
like to study blob generation analytically. This requires
understanding of

e experimental phenomenology

e linear modes in a tokamak edge

e properties of turbulent saturated states
e nonlinear dynamics

e intermittency

e formation of coherent structures

Analytical theories of the red topics
are not well developed.
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A research program to study blob generation
theoretically is extremely challenging.

Derive paradigmatic nonlinear equation for NSTX edge.

Numerically simulate to determine principal orthogonal
eigenfunctions (good basis functions for the inhomogeneous
turbulence).

Galerkin project to deduce manageable system of coupled
ODEs.

Qualitative nonlinear-dynamics analysis (cycles in phase space
describe birth—propagation—destruction of blobs).

Estimate of blob generation rate

— Understand dependence on important physical parameters.

— Compare with experiment and simulations.

GRADUATE with PhD (Stoltzfus-Dueck)!

[The ultimate goal is dynam:ical control.]
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To better train the next generation of
plasma physicists, we need to rethink our curricula.

Note: Append “for plasmas” to all topics below.

For everyone:

e more focus on nonlinear dynamics
(appreciate the richness of possi-
ble behavior)

e fractal Brownian motion

For the hard-core theorists:

basics of fluid turbulence theory
gyrokinetics (de-emphasize
Braginskii)

e Hamiltonian—-Lie methods e renormalization techniques
e bifurcation theory e PDF methods
e serious dynamical-systems e intermittency
analysis e coherent structures
4 N

These would be good chapters
for Ron’s next book,
LMethods in Nonlinear Plasma Theory, Vol. II.J

— 19 —
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Summary

The organization of Ron’s 1972 book applies just as well today, and
highlights a challenging list of state-of-the-art problems in nonlinear

plasma physics:
e Part I. Coherent Nonlinear Phenomena
- Ex B trapping
— blob generation
e Part II. Turbulent Nonlinear Phenomena
— zonal flows

— anisotropic cascades in magnetic turbulence

Ron’s pioneering research’
and effective exposition
have inspired multiple
generations of scientists.
kHe Is a great role model

/
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